
Supplementary Material for Beyond Semantic to Instance Segmentation:
Weakly-Supervised Instance Segmentation via Semantic Knowledge Transfer

and Self-Refinement

Beomyoung Kim1 YoonJoon Yoo1,2 Chaeeun Rhee3 Junmo Kim4

NAVER CLOVA1 NAVER AI Lab2 Inha University3 KAIST4

1. Detail of Center Clustering Algorithm
For the complementary knowledge between each net-

work output, we employ the center clustering algorithm to
extract center points from the offset map when generating
the refined label. Here, we describe a detailed algorithm for
the center clustering with a Figure 1. First, from the off-
set map, we create a magnitude map where each pixel rep-
resents the magnitude of the 2D vector. In this magnitude
map, the pixel near the center of each instance is close to
zero. Second, we apply a threshold to the magnitude map.
We set the threshold to 2.5. Last, we extract the center point
of each mask candidate obtained from the connected com-
ponent labeling (CCL) algorithm. Here, we observe that the
optimal area of the mask candidate is determined accord-
ing to the threshold. For example, when the threshold is
2.5, the desired area of the mask candidate is near 21. For
reliability-check utilizing the above observation, we addi-
tionally check whether the area of the mask candidate is
between 21-ε and 21+ε; we empirically set the ε to 3. Due
to the reliability-check process, we can prevent extracting
false center points from the unstable offset map in the early
training stage.

Input Offset map Magnitude map Threshold & CCL

Figure 1. Illustration of the center clustering algorithm. The blue
and yellow pixels in the magnitude map indicate that pixel values
are close to zero and far from zero, respectively.

2. Additional Ablation Study
Here, we provide some additional ablation studies. First

is the class-wise center map. As mentioned in the exper-
iment section, we modify the original Panoptic-DeepLab
network; we change the class-agnostic center map to the

class-wise center map. This modification yields a 1.0%
mAP50 improvement due to more accurate instance group-
ing; compared to the full supervision, our noisy offset vec-
tors in the offset map are sometimes grouped with incor-
rect center points. To prevent incorrect instance grouping,
we restrict the centers of other classes not to be grouped by
adopting the class-wise center map.

The second is an additional analysis for the proposed
methods. In Table 3 in the main paper, we provided the anal-
ysis for the proposed methods. Here, we show an additional
study for the model without IAG but with self-refine. As in
Table 1, the self-refine without IAG drops the performance
because the model without IAG suffers from the semantic
drift problem. And the drift iteratively degrades the quality
of the refined label, hurting the model.

The third is the effect of hyperparameter α that is a
threshold for the PAM module. When the α becomes large,
more noisy regions are deactivated. However, due to the
IAG and self-refine, mAP50 result of BESTIE is robust to
the α as in Table 2.

The fourth is the effect of the backbone network in
BESTIE. As mentioned in the experiment section, we adopt
HRNet-48 [4] as our backbone network. Here, we study
the effect of the backbone network by replacing another
backbone network, i.e., ResNet-50 [2]. As an experimen-
tal result, the HRNet-48 backbone yields about 1% mAP50

higher performance than the ResNet-50 (41.8% mAP50 for
HRNet-48 and 40.9% mAP50 ResNet-50 on VOC 2012
validation set). The reason is that the receptive field of
the HRNet-48 is much larger than the ResNet-50 and the
HRNet-48 is a well-designed network for the key-point rep-
resentation.

The last is a threshold for extracting instance cues from
PAM. Namely, we extract instance cues by obtaining lo-
cal maximum points from the PAM. Here, we adopt the in-
stance cues whose value is larger than the threshold, which
is set to 0.5. When we change the threshold to 0.3 and
0.7, the number of true-positives in pseudo labels changes

1



Table 1. Additional analysis for
the proposed methods.

PAM IAG refine mAP50

✓ 29.3
✓ ✓ 39.2
✓ ✓ ✓ 41.8
✓ ✓ 27.8

Table 2. Effect of the
hyperparameter α.

α mAP50

0.3 41.76
0.5 41.80
0.7 41.72

slightly, but the mAP50 variation is quite small to ±0.1%.
This is because our self-refinement method can progres-
sively refine the pseudo labels and increase the number of
true-positives.

3. Details of Peak Attention Module (PAM)
Implementation Details

As described in the main paper, we extract instance cues
from the classifier with our PAM. Here, we explain the im-
plementation details of the PAM. We employ VGG-16 [3]
classifier and plugin our PAM into the last three convolu-
tional layers of the classifier. The architecture of the clas-
sifier with PAM is illustrated in Figure 2. For training the
classifier with PAM, we use the binary cross-entropy loss
function and the stochastic gradient descent (SGD) opti-
mizer with a weight decay of 0.0005 and a momentum of
0.9. The initial learning rate is set to 0.001 and is decreased
by a factor of 10 at epoch 5 and 10. For data augmentation,
images are randomly cropped to 321×321, and random hor-
izontal flipping and random color jittering are applied. We
use a batch size of 5 and train the classifier for 15 epochs.
In the following section, we analyze how the PAM module
affects each layer.

Effect of PAM on each layer of Classifier

In this section, we analyze the effect of the PAM on each
layer of the classifier. With the classifier described in Fig-
ure 2 as our baseline, we plug-in or plug-out the module.
For the quantitative comparison as in Table 3, we evaluate
the mean average precision (mAP) of our instance segmen-
tation network without the Mask R-CNN refinement step.
Since our PAM strengthens the attention on peak regions
by deactivating noisy regions, we necessary to accurately
distinguish between peak and noise regions. In lower-level
layers (i.e., layer-1, layer-2, and layer-3), the classifier cap-
tures the local features such as edges, and the definition of
the peak region is unclear, so the effect of the PAM is mi-
nor. In contrast, in higher-level layers (i.e., layer-4, layer-5,
and layer-6), especially in the last layer, the classifier cap-
tures the global features, and the distinction between peak
regions and noisy regions is more clear; our PAM plays a
meaningful role in the last layer. From the results in Ta-
ble 3, we note that the PAM equipped in only the last layer

Table 3. Effect of the PAM on each layer of the classifier. ✓ means
the PAM is equipped.

PAM
layer4 layer5 layer6 mAP25 mAP50 mAP75

40.2 34.7 19.6
✓ 53.5 41.8 24.2

✓ ✓ 49.6 39.5 23.9
✓ ✓ ✓ 43.7 34.8 21.2
✓ ✓ 53.6 40.0 23.8
✓ 48.3 37.6 22.1

✓ 49.9 39.6 23.4
✓ ✓ 49.3 38.4 22.7

yields the best performance (41.8% mAP50) but the PAM
equipped in the last three layers significantly degrades the
performance (34.8% mAP50). We conclude that it is most
effective to use the PAM only in the last layer where the
definition of peak regions and noisy regions is the most ob-
vious, and excessive modulization of PAM might deactivate
the important features, degrading the performance.

4. Qualitative Results of Pseudo Label
In Figure 3, we provide more qualitative results of ac-

tivation maps and pseudo labels. As in the orange area of
Figure 3, the conventional CAMs have a limitation in gener-
ating high-quality pseudo labels due to the noisy activation
region. However, as in the green area of Figure 3, our PAM
produces sparse CAMs that help to extract one instance
cue per instance. Therefore, from the semantic knowledge
transfer, we can obtain more reliable pseudo labels, and the
pseudo labels contain more true positive training samples.

5. Qualitative Results of Proposed Method
In Figure 4, we provide more qualitative results of our

pseudo labels and network outputs. The pseudo label pro-
vides some reliable true-positive samples but contains lots
of false-negatives (i.e., missing instances). Due to the pro-
posed self-refinement with the instance-aware guidance, the
network can produce high-quality instance masks including
missing instances in pseudo labels. In addition, we com-
pare our instance mask with that of IRN [1], which is the
proposal-free method. The comparison results clearly show
that our approach can properly segment multiple instances
with a high-precision instance mask.

6. Failure Cases for PAM
We provide some failure cases of PAM in Figure 5, and

these examples demonstrate the superiority of the point-
supervised setting because inaccurate instance cues are re-
placed by ground-truth points. PAM has trouble in accu-
rately localizing overlapping instances, which leads to the



C
o
n
v
 3

x
3
, 
6
4

C
o
n
v
 3

x
3
, 
6
4

M
ax

-P
o
o
l

C
o
n
v
 3

x
3
, 
1
2

8

C
o
n
v
 3

x
3
, 
1
2

8

M
ax

-P
o
o
l

C
o
n

v
 3

x
3

, 
2

5
6

C
o
n
v
 3

x
3
, 
2
5

6

C
o
n
v
 3

x
3
, 
2
5

6

M
ax

-P
o
o
l

C
o
n
v
 3

x
3
, 
5
1

2

C
o
n
v
 3

x
3
, 
5
1

2

C
o
n
v
 3

x
3
, 
5
1

2

M
ax

-P
o
o
l

C
o
n
v
 3

x
3
, 
5
1

2

C
o
n
v
 3

x
3
, 
5
1

2

C
o
n
v
 3

x
3
, 
5
1

2

M
ax

-P
o
o
l

C
o
n
v
 3

x
3
, 
5
1

2

C
o
n

v
 1

x
1

, 
C

P
A

M

C
o
n
v
 3

x
3
, 
5
1

2

P
A

M

C
o
n
v
 3

x
3
, 
5
1

2

P
A

M

Input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Activation Maps

“Dog”
BCE 

loss

Figure 2. The detailed architecture of our classification network. BCE loss means the binary cross entropy loss function. The PAM is
equipped in last three convolutional layers and trained with a self-supervised scheme.

incorrect pseudo label (first row in Figure 5). In addition,
missing instance cue or noisy localization increases missing
instances in the pseudo label (second and third rows in Fig-
ure 5). Last, the WSSS method is trained with only image-
level labels, some insufficient semantic segmentation maps
yield inaccurate pseudo labels (last row in Figure 5).

7. Failure Cases for Proposed Method
We provide some failure cases of BESTIE in Figure 6.

First, when center points of instances are close to each other,
we often fail to obtain the proper instance masks (first row
in Figure 6); however, the keypoint-based method has suf-
fered this issue even in a fully-supervised setting. In ad-
dition, noisy center and offset maps lead to false instance
masks (second and third rows in Figure 6). Last, when the
semantic segmentation map provides a noisy foreground re-
gion, we often fail to obtain the precise instance mask.

8. Pytorch-style Pseudo-code.
To describe the details of each proposed methods, we

provide pytorch-style pseudo-code algorithm. Note that our
BESTIE is simple and easy to be implemented.

1 for n in range(train_iterations):
2 # load data: x (input tensor), seg_map (weakly-supervised semantic map)
3 x, seg_map = loader.next()
4
5 # pseudo-label generation
6 PAM = classifier(x)
7 peak_points = extract_peak_points(PAM)
8 pseudo_label = pseudo_label_gen(seg_map, peak_points)
9

10 # network forwarding
11 outputs = BESTIE(x)
12
13 # refined-label generation
14 refined_label = refined_label_gen(outputs)
15
16 # backward & optimize
17 loss_pseudo = objective_function_with_IAG(outputs, pseudo_label)
18 loss_refined = objective_function_with_IAG(outputs, refined_label)
19 loss = loss_pseudo + loss_refined
20 loss.backward()
21 optimizer.step()

Listing 1. Overview of BESTIE

1 def PAM(x, control_values):
2 x = F.relu(x) # [B, K, H, W]
3
4 criteria_points = F.adaptive_max_pool2d(x, 1) # [B, K, 1, 1]
5 criteria_points = criteria_points.expand_as(x) # [B, K, H, W]
6
7 noisy_region = (x < criteria_points * control_values)
8 x[noisy_region] = 0 # deactivate noisy region
9 return x

Listing 2. PAM Module

1 def extract_peak_points(heatmap, kernel, threshold, K=40):
2 B, C, H, W = heatmap.size()
3
4 heatmap_max = F.max_pool2d(heatmap, (kernel, kernel),
5 stride=1, padding=(kernel - 1) // 2)
6 keep = (heatmap_max == heatmap).float()
7
8 local_max = heatmap * keep
9 peak_points = torch.nonzero(local_max > threshold)

10 return peak_points

Listing 3. Point Extraction

1 def pseudo_label_gen(seg_map, peak_points):
2 # seg_map : [H, W] , peak points : [N, 2]
3 mask_candidates = connected_component_labeling(seg_map)
4
5 for mask in mask_candidates:
6 if one_peak_point_in_mask(mask, peak_points):
7 center_point = centroid(mask)
8 center_map_generation(center_point)
9 offset_map_generation(center_point, mask)

10
11
12 def offset_map_generation(center_point, mask): # mask: bindary mask
13 cy, cx = center_point
14 mask_idx = np.where(mask > 0)
15
16 coord = np.ones_like(mask, dtype=np.float32)
17 y_coord = np.cumsum(coord, axis=0)-1
18 x_coord = np.cumsum(coord, axis=1)-1
19
20 offset_y_index = (np.zeros_like(mask_idx[0]), mask_idx[0], mask_idx[1])
21 offset_x_index = (np.ones_like(mask_idx[0]), mask_idx[0], mask_idx[1])
22
23 pseudo_offset_map[offset_y_index] = cy - y_coord[mask_idx]
24 pseudo_offset_map[offset_x_index] = cx - x_coord[mask_idx]

Listing 4. Pseudo-Label Generation

1 def refined_label_gen(center_map, offset_map, seg_map, thresh):
2 instance_masks = instance_grouping(center_map, offset_map, seg_map,

thresh)
3
4 for mask in instance_masks:
5 center_point = centroid(mask)
6 center_map_generation(center_point)
7 offset_map_generation(center_point, mask)
8
9

10 def instance_grouping(center_map, offset_map, seg_map, thresh):
11 ctr = extract_peak_points(center_map, thresh)
12 ctr = center_clustering(ctr, offset_map)
13 # center_map : [1, C, H, W], ctr : [N, 2], offset_map : [2, H, W]
14
15 H, W = offset_map.size()[1:]
16 y_coord = torch.arange(H).repeat(1, W, 1).transpose(1, 2)
17 x_coord = torch.arange(W).repeat(1, H, 1)
18 coord = torch.cat((y_coord, x_coord), dim=0)
19
20 ctr_loc = coord + offsets
21 ctr_loc = ctr_loc.reshape((2, H*W)).transpose(1, 0) # [H*W, 2]
22
23 dist = torch.norm(ctr.unsqueeze(1)-ctr_loc.unsqueeze(0), dim=-1) # [N,

H*W]
24
25 # finds center with minimum distance at each location
26 instance_mask = torch.argmin(dist, dim=0).reshape((1, H, W)) + 1
27
28 return instance_mask

Listing 5. Refined Label Generation

1 def objective_function_with_IAG(pred, gt, eps=1e-4):
2 gamma_offset, gamma_center, gamma_semantic = 0.01, 200.0, 1.0
3 guidance_region = (gt[’offset’] != 0).float() # labeled instance region
4
5 offset_map_loss = F.l1_loss(pred[’offset’], gt[’offset’], reduction=’

none’) * guidance_region



6 offset_map_loss = offset_map_loss.sum() / (guidance_region.sum() + eps)
7
8 center_map_loss = F.mse_loss(pred[’center’],gt[’center’], reduction=’

none’) * guidance_region
9 center_map_loss = center_map_loss.sum() / (guidance_region.sum() + eps)

10
11 semantic_map_loss = F.cross_entropy(pred[’semantic’], gt[’semantic’])
12
13 return (offset_map_loss * gamma_offset) + (center_map_loss *

gamma_center) + (semantic_map_loss * gamma_semantic)

Listing 6. Objective Function with IAG

References
[1] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly super-

vised learning of instance segmentation with inter-pixel rela-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2209–2218, 2019. 2, 6

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 1

[3] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[4] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-
resolution representation learning for human pose estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5693–5703, 2019. 1



Input CAM PAM
Refined

Semantic map

Refined

Offset map

Refined

Center map

Pseudo

Semantic map

Pseudo

Offset map

Pseudo

Center map

Instance cue from CAM Instance cue from PAM

Figure 3. Qualitative results of pseudo labels generated from conventional CAMs (orange region) and pseudo labels generated from our
PAM (green region). The PAM can more accurately extract one peak point per instance than the CAM.



Input

Image

Pseudo

Offset map

Pseudo 

Center map

Output 

Offset map

Output 

Center map

Our

Instance Mask

IRN

Instance Mask

Pseudo 

Semantic map

Output 

Semantic map

Figure 4. Qualitative results of our pseudo labels and outputs of BESTIE on VOC 2012 dataset. We note that we only use the image-level
labels without the off-the-shelf proposal techniques. Compared with IRN [1], which is the proposal-free method, our BESTIE can segment
multiple instances more accurately and precisely.



Input PAM
Pseudo

Semantic map

Pseudo

Offset map

Pseudo 

Center map

O
cc

lu
si

o
n

M
is

si
n

g
 I

n
st

an
ce

 C
u

e
N

o
is

y
 A

ct
iv

at
io

n
 M

ap
In

su
ff

ic
ie

n
t

W
S

S
S

 m
ap

Figure 5. Failure cases of the PAM.

Input

O
cc

lu
si

o
n

N
o
is

y
 C

en
te

r 
m

ap
N

o
is

y
 O

ff
se

t 
m

ap
N

o
is

y
 S

em
an

ti
c 

m
ap

Output

Semantic map

Output

Center map

Output

Offset map

Instance

Mask

Figure 6. Failure cases of BESTIE.


	. Detail of Center Clustering Algorithm
	. Additional Ablation Study
	. Details of Peak Attention Module (PAM)
	. Qualitative Results of Pseudo Label
	. Qualitative Results of Proposed Method
	. Failure Cases for PAM
	. Failure Cases for Proposed Method
	. Pytorch-style Pseudo-code.

