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A. Hypothesis Testing

We handle the extreme noise in event data under low-
light conditions with conditional denoising, which consid-
ers spatial consistency, as explained in Section 3.2. In this
section, we further elaborate the hypothesis testing proce-
dure. Given a batch of size N containing events in the tar-
get domain, we obtain the transformed event ratios T (Ri)
for i = 1, 2, . . . , N using the source domain statistics, as
described in Equation (6) in the main paper. If the trans-
formed ratios follow a standard Gaussian distribution, we
can assume that the event measurement is free from noise
burst.

To this end, we first calculate the batch-wise mean µ̂ and
standard deviation σ̂ of the transformed ratios T (Ri). We
then determine if the event ratio R = Npos/Nneg is either
too large (noise burst in positive channel) or too small (noise
burst in negative channel). Specifically, we apply the stan-
dard one-tailed z-test procedure [19], and label the batch as
containing noise burst in the positive channel if the follow-
ing inequality holds,

Φ(

√
N |µ̂− µthres|

σ̂
) > 0.9, (1)

where Φ(·) is the cumulative distribution function (CDF) of
the standard Gaussian. Here, µthres is the threshold value
for separating noise bursts, which we set to 0.25 in all our
experiments. However, the choice of µthres does not have
a significant impact in performance. Table A.1 verifies that
the accuracy of the timestamp image [11] in validation #6, 7
from N-ImageNet is stable for various values of µthres. The
criterion for determining noise burst in the negative channel
is similarly defined as follows,

Φ(

√
N |µ̂+ µthres|

σ̂
) < 0.1, (2)

where the signs of variables in the inequality are reversed.

*Young Min Kim is the corresponding author.

µthres 0.25 0.5 0.75 1.00

Validation 6 29.20 29.39 29.13 27.57
Validation 7 38.46 37.36 37.19 37.21

Table A.1. Effect of the threshold value µthres used in hypothesis
testing on the classifier performance in N-ImageNet [6].

Day Recording

Source 2019-06-19
Day 1 2019-02-22
Day 2 2019-06-11
Day 3 2019-06-14
Day 4 2019-02-21
Day 5 2019-06-26

Table C.1. Conversion table for the Prophesee Megapixel
Dataset [12] on days used in the main paper and the corresponding
recordings.

B. Hyperparameter Setup
In this section we report the hyperparameters used for

Ev-TTA. We mostly follow the hyperparameter setup of
Tent [20] and avoid tuning the algorithm on the test set.
For all experiments, we use the Adam optimizer [7]. In
N-ImageNet experiments, we use a learning rate of 0.00025
with a batch size of 64, while for other datasets with smaller
number of labels, we use a learning rate of 0.001 with a
batch size of 128. For steering angle prediction, we use a
learning rate of 0.000025 with a batch size of 64, as larger
learning rates failed to converge. We employ the identical
hyperparameter setup for baselines used throughout our ex-
periments.

C. Dataset Preparation
In this section we explain the preprocessing pipelines

used in datasets for our experiments.

Prophesee Megapixel Dataset For evaluating Ev-TTA in
real-world environments, we use the Prophesee Megapixel



Day Scene Type Time Recording

Source City Day rec1487779465
Day 1 Freeway Evening rec1487608147
Day 2 City Night rec1487355090
Day 3 Town Day rec1487856408
Day 4 City Day rec1487842276

Table C.2. Conversion table for the DDD17 Dataset [2] on days
used in the main paper and the corresponding recordings.

Method No Adaptation Min Entropy Majority Vote Random (Ours)

Accuracy 33.37 43.77 43.74 43.47

Table D.1. Ablation study on anchor event selection. We report the
average accuracy of the timestamp image [11] on the N-ImageNet
variants.

Dataset [12] in Section 4.1. Due to the immense size of
the dataset, we select six recordings for our experiments,
where the exact filename of each recording is specified
in Table C.1. We further use the Prophesee Automotive
Dataset Toolbox [12] to parse the bounding boxes and col-
lect approximately 9000 bounding boxes for three classes
(car, truck, bus). We discard other four classes (twowheeler,
pedestrian, traffic light, traffic sign) in the dataset because
the object bounding boxes are often too small and the class
labels are not as frequent.

SimN-ImageNet To evaluate Ev-TTA for reducing
sim2real gap, we generate SimN-ImageNet, which is a sim-
ulated version of N-ImageNet [6]. We use the event cam-
era simulator Vid2E [4, 14] to generate synthetic events
from a virtual event camera moving around images from
ImageNet [15]. The event camera resolution was set to
480 × 640, to match the resolution of the Samsung DVS
camera [16] used for creating N-ImageNet. Due to the large
size of ImageNet [15], generating SimN-ImageNet using
Vid2E [4, 14] takes approximately nine days on a config-
uration of eight 2080Ti GPUs.

DDD17 Dataset For assessing the extension of Ev-TTA
to regression tasks, we use the DDD17 dataset [2] which is a
dataset targeted for steering angle prediction. We select five
recordings for our experiments, where the exact filenmae of
each recording is specified in Table C.2. We further use the
preprocessing toolkit provided by the authors [2,5] to obtain
event histograms [9] from raw event data.

D. Additional Ablation Study
Anchor Event Selection We report the impact of choos-
ing the anchor event for optimizing the prediction similar-
ity loss and selective entropy loss in Section 3.1. Recall
that in Section 3.1 we choose the anchor event as a random

Method No Adaptation Ev-TTA Augmentation

Accuracy 33.37 43.47 41.09

Table D.2. Ablation study on using event slices. We report the
average accuracy of the timestamp image [11] on the N-ImageNet
variants.

event slice. To validate our design choice, we implement
two additional variants of Ev-TTA where the anchor is cho-
sen more deliberately. The first variant (Min Entropy) uses
the event slice with the smallest prediction entropy as the
anchor. The second variant (Majority Vote) uses the event
slice whose predicted class label is equal to the majority
vote of the K event slices. We report the average perfor-
mance of the timestamp image [11] on the N-ImageNet [6]
variants under the various anchor selection schemes. As
shown in Table D.1, only a small amount of performance
gain exists from using deliberate anchor selection schemes.
Therefore, the random selection scheme suffices for suc-
cessful adaptation.

Using Event Slices for Adaptation We validate the use
of multiple event slices for the prediction similarity loss and
selective entropy loss in Section 3.1. To this end, we imple-
ment a variant of Ev-TTA that applies data augmentation to
a single event slice, similar to SENTRY [13]. Instead of en-
forcing consistency on predictions among event slices, this
variant applies the same loss formulation among augmented
events. We employ three augmentation schemes: horizontal
flipping, polarity flipping, and temporal flipping. Horizon-
tal flipping is where the input event is flipped along the spa-
tial dimension horizontally, and polarity flipping is where
the event polarities are inverted. Temporal flipping is where
the timestamps of the input event are reversed, similar to
Tulyakov et al. [18]. The performance comparison between
Ev-TTA and the augmentation-based variant is made on N-
ImageNet [6] using the timestamp image [11] as input. As
shown in Table D.2, the average accuracy is higher for Ev-
TTA that uses event slices to impose temporal consistency.
The design choice of using event slices instead of data aug-
mentation leads to effective adaptation.

E. Full Evaluation Results in N-ImageNet
In this section, we report the full evaluation results of

various event representations on N-ImageNet [6]. Ev-TTA
shows large amount of performance improvement com-
pared to the baselines [10, 13, 17] in all tested representa-
tions both online and offline. The results in Table E.1∼12
is the accuracy for six event representations, namely: binary
event image [3], event histogram [9], timestamp image [11],
time surface [8], sorted time surface [1], and DiST [6]. We
provide the individual accuracy for each representation.



Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 45.86 43.01 33.62 39.47 25.39 36.23 21.16 30.02 36.52 34.92 33.37
Mummadi et al. [10] - 44.90 45.25 45.45 42.66 43.95 24.27 33.84 45.00 44.52 41.09
URIE [17] - 41.68 39.77 42.28 38.30 39.42 17.68 30.95 39.38 41.90 36.82
SENTRY [13] - 45.90 45.10 45.72 41.93 43.96 20.06 33.94 44.87 44.44 40.66
Tent [20] - 42.36 43.93 43.94 41.01 41.73 25.21 34.62 43.40 42.97 39.91
Ev-TTA - 47.15 46.94 46.58 44.03 45.66 29.20 38.45 47.12 46.12 43.47

Table E.1. Offline evaluation results of timestamp image [11] on N-ImageNet [6] and its variants.

Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 45.86 43.01 33.62 39.47 25.39 36.23 21.16 30.02 36.52 34.92 33.37
Mummadi et al. [10] - 42.60 43.06 43.39 40.36 41.29 24.93 33.55 42.39 42.27 39.32
URIE [17] - 39.12 38.10 39.74 36.69 37.48 18.54 28.32 38.27 39.07 35.04
SENTRY [13] - 42.22 42.45 43.21 39.44 40.96 20.48 31.38 41.42 41.71 38.14
Tent [20] - 41.30 42.41 42.55 39.50 40.26 24.07 33.21 41.65 41.34 38.48
Ev-TTA - 43.86 43.91 44.33 41.16 42.45 25.86 34.78 43.84 43.37 40.40

Table E.2. Online evaluation results of timestamp image [11] on N-ImageNet [6] and its variants.

Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 47.73 43.73 33.72 37.69 24.56 35.24 20.89 29.68 36.33 34.56 32.93
Mummadi et al. [10] - 46.99 46.38 45.71 42.92 44.79 28.26 36.54 45.35 45.12 42.45
URIE [17] - 45.08 44.36 44.18 40.40 42.48 23.71 34.48 43.77 42.99 40.16
SENTRY [13] - 47.06 48.01 45.75 41.97 45.06 24.60 35.48 45.06 44.91 41.99
Tent [20] - 44.88 45.00 44.20 41.31 43.11 26.94 34.65 43.75 43.57 40.82
Ev-TTA - 48.64 48.01 47.24 44.49 47.06 30.08 38.34 47.37 46.58 44.20

Table E.3. Offline evaluation results of event histogram [9] on N-ImageNet [6] and its variants.

Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 47.73 43.73 33.72 37.69 24.56 35.24 20.89 29.68 36.33 34.56 32.93
Mummadi et al. [10] - 43.71 43.67 43.20 40.33 42.54 25.65 33.66 42.55 42.76 39.79
URIE [17] - 41.94 42.16 42.10 38.67 41.10 23.21 31.90 40.97 41.20 38.14
SENTRY [13] - 43.31 42.77 42.78 39.33 41.68 23.20 32.36 41.91 41.86 38.80
Tent [20] - 42.69 42.93 42.56 39.61 41.79 25.07 32.83 41.68 41.82 39.00
Ev-TTA - 44.94 44.63 43.31 41.48 43.46 26.89 34.71 43.86 43.42 40.86

Table E.4. Online evaluation results of event histogram [9] on N-ImageNet [6] and its variants.

Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 46.36 42.68 30.68 37.74 22.99 34.74 19.00 27.85 34.03 32.08 31.31
Mummadi et al. [10] - 46.07 45.02 44.94 42.35 43.95 22.90 31.58 44.66 45.50 40.77
URIE [17] - 42.63 39.30 42.74 37.28 41.30 14.58 25.76 42.23 42.53 36.48
SENTRY [13] - 46.43 44.27 44.39 40.20 43.56 18.54 31.94 43.69 43.52 39.62
Tent [20] - 43.16 43.51 43.11 40.47 42.21 25.33 33.28 42.91 43.90 39.76
Ev-TTA - 48.51 46.46 47.01 43.48 47.10 29.08 38.39 46.72 46.76 43.72

Table E.5. Offline evaluation results of binary event image [3] on N-ImageNet [6] and its variants.



Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 46.36 42.68 30.68 37.74 22.99 34.74 19.00 27.85 34.03 32.08 31.31
Mummadi et al. [10] - 43.61 42.63 42.65 40.14 41.80 23.63 32.45 42.27 42.77 39.11
URIE [17] - 41.20 39.49 41.15 37.01 40.01 19.89 28.12 40.89 40.54 36.48
SENTRY [13] - 42.99 41.75 42.05 38.14 41.05 19.52 30.39 41.00 41.58 37.61
Tent [20] - 42.07 41.78 41.64 39.12 40.89 24.05 31.97 41.44 41.94 38.32
Ev-TTA - 44.97 43.73 43.89 40.85 43.34 25.42 34.65 43.68 43.80 40.48

Table E.6. Online evaluation results of binary event image [3] on N-ImageNet [6] and its variants.

Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 44.32 41.01 34.63 40.00 25.48 34.89 22.12 31.27 37.12 35.36 33.54
Mummadi et al. [10] - 44.40 44.85 46.56 43.05 42.96 24.05 34.18 45.56 44.76 41.15
URIE [17] - 36.21 38.20 36.76 34.42 37.85 10.74 24.44 38.37 38.25 32.80
SENTRY [13] - 44.42 46.63 47.02 42.27 42.51 21.00 35.13 45.90 45.34 41.14
Tent [20] - 41.77 45.23 45.26 41.69 41.36 26.03 34.64 43.97 43.71 40.41
Ev-TTA - 45.50 47.42 47.24 44.27 43.87 27.28 37.06 47.05 46.54 42.91

Table E.7. Offline evaluation results of time surface [8] on N-ImageNet [6] and its variants.

Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 44.32 41.01 34.63 40.00 25.48 34.89 22.12 31.27 37.12 35.36 33.54
Mummadi et al. [10] - 41.03 44.17 45.01 41.01 40.43 25.07 33.97 43.33 43.28 39.70
URIE [17] - 34.24 34.71 35.11 30.76 33.13 12.50 21.88 33.83 32.59 29.86
SENTRY [13] - 40.63 43.79 44.62 39.62 39.00 21.49 32.78 42.74 42.61 38.59
Tent [20] - 39.77 43.60 44.23 40.20 39.36 25.13 33.33 42.50 42.39 38.95
Ev-TTA - 42.51 45.18 45.29 41.37 40.97 25.68 35.25 44.15 43.88 40.48

Table E.8. Online evaluation results of time surface [8] on N-ImageNet [6] and its variants.

Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 47.90 44.33 33.50 40.17 23.72 37.19 21.57 30.31 36.63 35.18 33.62
Mummadi et al. [10] - 47.26 47.35 47.47 44.29 45.64 25.56 36.63 46.60 46.20 43.00
URIE [17] - 42.87 43.76 44.90 40.50 40.82 22.05 33.55 43.37 41.70 39.28
SENTRY [13] - 47.66 47.32 47.45 42.55 45.25 22.04 34.66 46.12 45.84 42.10
Tent [20] - 44.65 45.94 45.78 42.10 43.91 27.12 35.11 44.96 44.55 41.57
Ev-TTA - 49.58 47.67 48.36 45.59 46.72 30.07 39.30 48.24 47.76 44.81

Table E.9. Offline evaluation results of sorted time surface [1] on N-ImageNet [6] and its variants.

Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 47.90 44.33 33.50 40.17 23.72 37.19 21.57 30.31 36.63 35.18 33.62
Mummadi et al. [10] - 44.49 45.03 45.15 41.68 42.84 26.07 35.10 44.15 44.08 40.95
URIE [17] - 40.13 40.60 41.29 37.30 39.24 20.80 30.45 39.54 40.41 36.64
SENTRY [13] - 43.98 44.10 44.79 39.97 42.01 21.71 32.38 43.03 43.56 39.50
Tent [20] - 43.40 44.24 44.30 40.70 42.18 25.64 34.08 43.16 43.13 40.09
Ev-TTA - 46.02 45.29 45.91 42.53 43.90 26.70 36.17 45.00 45.22 41.86

Table E.10. Online evaluation results of sorted time surface [1] on N-ImageNet [6] and its variants.



Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 48.43 45.17 36.58 42.28 26.57 38.70 24.39 32.76 38.99 37.37 35.89
Mummadi et al. [10] - 48.02 47.41 47.98 44.37 46.39 28.52 38.60 47.21 46.80 43.92
URIE [17] - 43.78 43.31 44.03 41.04 40.71 16.80 28.61 43.52 41.33 38.13
SENTRY [13] - 48.33 47.70 48.38 43.71 46.28 25.25 37.51 47.53 46.73 43.49
Tent [20] - 46.32 46.17 46.64 42.74 44.56 28.20 36.93 45.59 45.32 42.50
Ev-TTA - 48.53 47.75 48.38 45.35 47.26 31.02 39.07 48.19 47.66 44.80

Table E.11. Offline evaluation results of DiST [6] on N-ImageNet [6] and its variants.

Change None Trajectory Brightness Average

Validation Dataset Orig. 1 2 3 4 5 6 7 8 9 All

No Adaptation 48.43 45.17 36.58 42.28 26.57 38.70 24.39 32.76 38.99 37.37 35.89
Mummadi et al. [10] - 45.85 45.73 46.25 42.39 44.13 27.82 36.48 45.19 44.85 42.08
URIE [17] - 40.88 41.04 42.03 37.68 40.17 20.14 30.18 41.44 40.14 37.08
SENTRY [13] - 45.47 45.58 46.12 41.55 43.52 24.57 35.03 45.03 44.69 41.28
Tent [20] - 43.27 44.10 44.37 40.61 41.78 25.52 34.10 43.39 43.23 40.04
Ev-TTA - 46.32 46.05 46.57 43.23 44.58 28.05 36.98 46.03 45.64 42.61

Table E.12. Online evaluation results of DiST [6] on N-ImageNet [6] and its variants.
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