
A. Implementation Details
Figure 7 presents all examples of style images which

are used in computing relative distance and running the
baseline on-the-fly stylization. In the subsections, we pro-
vide implementation details for DCGAN variants and Style-
GAN2 variants. For further details, please refer to our code
at https://github.com/naver-ai/FSMR.

A.1. DCGAN variants Experiments
Augmentations for DCGAN, bCRGAN include image

flipping and random cropping. Consistency regularization
coefficients for bCRGAN are �real = �fake = 10. We
use non-saturating logistic loss with R1 regularization, and
Adam optimizer with �1 = 0.5, �2 = 0.999, ✏ = 10�8,
and learning rate=0.0001 for both models. We ran our ex-
periments on one Tesla V100 GPU, using Tensorflow 2.1.0,
CUDA 10.1, and cuDNN 7.6.4. We apply FSMR for both
real and fake samples and the total loss is

Ltotal = Ladv + �LFSMR, (10)

where � = 10. We performed all training runs using 1 GPU,
continued the training for 20k iterations, and used a mini-
batch size of 32.

A.2. StyleGAN2 variants Experiments
For StyleGAN2, ADA2, and DiffAug3, we use the offi-

cial Tensorflow implementations. We kept most of the de-
tails unchanged, including network architectures, weight
demodulation, path length regularization, lazy regulariza-
tion, style mixing regularization, bilinear filtering in all up-
/downsampling layers, equalized learning rate for all train-
able parameters, minibatch standard deviation layer at the
end of the discriminator, exponential moving average of
generator weights, non-saturating logistic loss with R1 reg-
ularization, and Adam optimizer with �1 = 0, �2 = 0.99,
and ✏ = 10�8. We ran our experiments on eight Tesla V100
GPUs, using Tensorflow 1.14.0, CUDA 10.0, and cuDNN
7.6.3. We apply FSMR only to the real samples because it
leads to slightly larger gain. The weights � for LFSMR are
0.05 for FFHQ and 1 for the other datasets. We performed
all training runs using 4 GPUs, continued the training for
25M iterations, and used minibatch size of 32, except for
CIFAR-10, where we used 2 GPUs, 100M iterations, and a
minibatch size of 64.

B. Evaluation metrics
We measure Fréchet Inception Distance (FID) [11] and

Inception Score (IS) [33] using the official Inception v3

2
https://github.com/NVlabs/stylegan2-ada

3
https : / / github . com / mit - han - lab / data -

efficient-gans

Algorithm 2 FSMR Pseudocode, Tensorflow-like

N: batch size, H: height, W: width, C: channels

def FSM(x, y, alpha, eps=1e-5):

x_mu, x_var = tf.nn.moments(x, axes=[1,2],

keepdims=True) # Nx1x1xC

y_mu, y_var = tf.nn.moments(y, axes=[1,2],

keepdims=True) # Nx1x1xC

normalize

x_norm = (x - mu) / tf.sqrt(var + eps)

de-normalize

x_fsm = x_norm * tf.sqrt(y_var + eps) + y_mu

combine

x_mix = alpha * x + (1 - alpha) * x_fsm

return x_mix # NxHxWxC

def discriminator(img, use_fsmr=False):

layers: conv, bn, actv, ..., fc ->

discriminator layers

x = img # NxHxWxC

indices = tf.range(tf.shape(x)[0])

shuffle_indices = tf.random.shuffle(indices)

alpha = tf.random.uniform(shape=[], minval=0.0,

maxval=1.0)

for layer in layers:

x = layer(x)

if use_fsmr and layer.name == ’conv’:

y = tf.gather(x, shuffle_indices)

x = FSM(x, y, alpha)

return x # Nx1

def FSMR(real_img, fake_img, use_fsmr=True):

real_logit = discriminator(real_img) # Nx1

fake_logit = discriminator(fake_img) # Nx1

if use_fsmr:

real_logit_mix = discriminator(real_img,

use_fsmr) # Nx1

fake_logit_mix = discriminator(fake_img,

use_fsmr) # Nx1

d_fsmr_loss = l2_loss(real_logit,

real_logit_mix)

d_fsmr_loss += l2_loss(fake_logit,

fake_logit_mix) # optional

d_fsmr_loss *= 10 # weight for fsmr

else:

d_fsmr_loss = 0

return d_fsmr_loss

model in Tensorflow. When we compute FID and IS, we
sample the same number of images to the number of real
images in the training set.

C. Pseudo-code
We provide the Tensorflow-like pseudo-code of FSMR

in Algorithm 2. FSMR is simple to fit easily into any model.

D. Comparison with previous mixing methods.
In Table 5, we show the comparison results from the pre-

vious mixing methods. First of all, the difference between
the previous methods and FSMR is as follows. CutMix [38]
and Mixup [39] apply augmentations on images, not on the
feature maps. Manifold-Mixup [36] performs linear inter-

polation on the feature map without implicit style trans-
fer. StyleMix [12] applies AdaIN on images with an extra
encoder for augmentation, not for consistency. MoEx [27]
shares only the first component with ours: reducing style
bias requires not only feature statistics mixing (e.g. AdaIN
[13], MoEx), but also the consistency loss after feature
statistics mixing. When we have conducted the experiment,
CutMix and Manifold-Mixup are applied as follows: Cut-
Mix in feature maps and Manifold-Mixup with consistency
regularization. None of them outperforms ours because they
do not reduce style bias.

CIFAR-10 FFHQ AFHQ

ADA w/ FSMR 2.90 3.91 6.12

ADA w/ Mixup 3.48 4.40 6.67

ADA w/ CutMix 3.45 4.36 6.51

Table 5. Comparison from the previous mixing methods.

E. Ablation on the style dataset.
Table 6 shows that the improvements by FSMR is larger

than the improvements by using internal images as style ref-
erences. The numbers (a) / (b) / (c) report FIDs for

(a) on-the-fly with the training images
(b) on-the-fly with WikiArt
(c) FSMR.

FSMR outperforms both on-the-fly settings. Hence, we ar-
gue that the difference does not come from using the same
data distribution but from FSMR.

CIFAR-10 FFHQ AFHQ

DCGAN 16.02 / 15.88 / 14.98 7.52 / 7.33 / 6.76 14.87 / 14.22 / 13.19

bCRGAN 12.58 / 12.43 / 11.17 5.74 / 5.20 / 4.68 9.02 / 8.63 / 8.33

Table 6. Comparison to on-the-fly stylization with the training
images.

F. Additional results
In Figure 8, we show the relative distance on several

datasets except the ones in the main paper. We observe that
FSMR reduces the relative distance of the discriminator,
i.e., the discriminator relies less on style.

Figure 9 illustrate an additional visualization of the effect
of FSM on FFHQ, AFHQ, and LSUN Church.

In Figure 10, and 11, we show generated images for
several datasets from the baseline with FSMR. The im-
ages were selected at random, i.e., we did not perform any
cherry-picking. We observe that FSMR yields excellent re-
sults in all cases.

Figure 7. Example style images. We present all examples of style images that we used in the comparison experiments.

Figure 8. The relative distance of discriminator results for several datasets.

(a) Style (b) Content (d) Visualization of FSM

Figure 9. Additional visualization of the effect of FSM. (a) Style images. (b) Content images. (c) Reconstruction of FSMed features
preserves the detailed shapes.

Figure 10. Some example images and FIDs of competitors on CIFAR-10, FFHQ, AFHQ, and MetFaces.

FFHQ, FID: 3.76 MetFaces, FID: 45.47 AFHQ, FID: 8.59
St

yl
eG

A
N

2
+

FS
M

R

FFHQ, FID: 3.91 MetFaces, FID: 27.81 AFHQ, FID: 6.12

A
D

A
+

FS
M

R

FFHQ, FID: 4.99 MetFaces, FID: 29.98 AFHQ, FID: 6.53

D
iff

Au
g

+
FS

M
R

Figure 11. Uncurated random samples from the models trained with FSMR in three datasets.

