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In the supplementary materials, we provide more de-
tailed experimental results, along with more visualizations
(and also video prediction results) for several video segmen-
tation datasets. We also discuss the current limitations in the
proposed TubeFormer-DeepLab in the hope to inspire more
future research on the unification of video segmentation
tasks. We use ‘TF-DL’ to denote TuebeFormer-DeepLab
in the results.

1. More Experimental Results

In this section, we provide more experimental results,
comparing our methods with published works in detail.
We do not include the unpublished and concurrent ICCV
2021 challenge entries, which usually adopt complicated
pipelines, e.g., model ensembles, separate models for differ-
ent sub-tasks (e.g., tracking, and segmentation), multi-scale
inference, or pseudo labels. In the tables, we explicitly list
the adopted backbones and decoders for a detailed compari-
son. We note that most of the state-of-the-art approaches for
different video segmentation tasks have fundamentally di-
verged, while our proposed TubeFormer-DeepLab is a sim-
ple and unified system for general video segmentation tasks.

[VPS] Tab. 1 summarizes our results on KITTI-STEP val
set. As shown in the table, our TubeFormer-DeepLab-B1,
employing ResNet-50 [12] and axial-attention [22], signif-
icantly outperforms Motion-DeepLab [24] (w/ ResNet-50,
dual-ASPP [6] and dual decoders [7]) and VPSNet [14]
(w/ ResNet-50, FPN [16], and Mask R-CNN [11] multi-
head predictions) by +12 and +14 STQ, respectively. We
also report the results in the VPQ metric [14] (another pop-
ular video panoptic segmentation metric). Similarly, our
model performs better than Motion-DeepLab and VPSNet
by +11.1 and +8.1 VPQ.

[VSS] In Tab. 2, we report our results on VSPW val set.
As shown in the table, our TubeFormer-DeepLab-B1, em-
ploying ResNet-50 and axial-attention, significantly outper-
forms TCB [18] (w/ spatial-temporal OCRNet [28] and a
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novel memory scheme) by +21.1 mIoU. Our TubeFormer-
DeepLab-B1 also shows better results in terms of VC8 and
VC16 (another video semantic segmentation metrics pro-
posed in [18]).

[VIS] Tab. 3 summarizes our results on Youtube-VIS-
2019 val set, along with several state-of-the-art methods.

Among the methods that predict non-overlapping seg-
mentation, our TubeFormer-DeepLab-B1 (per-pixel), em-
ploying ResNet-50 and axial-attention, outperforms STEm-
Seg [1] (using ResNet-50, FPN, and their novel 3D
convolution-based TSE decoder with multi-head predic-
tions) by +5.8 AP. Our TubeFormer-DeepLab-B1 (per-
pixel) is also better than STEm-Seg with ResNet-101 back-
bone by +1.8 AP. If we also increase our backbone capac-
ity, our TubeFormer-DeepLab-B4 (per-pixel) performs bet-
ter than STEm-Seg w/ ResNet-101 by +10.8 AP.

Our TubeFormer-DeepLab-B1 (per-pixel) performs
worse than other state-of-the-art methods, including
MaskProp [2], Seq Mask R-CNN [15], and the concurrent
work IFC [13], since our per-pixel inference scheme gener-
ates non-overlapping predictions (i.e., only one prediction
for each pixel in the final output), which is disfavored by
the track AP metric. To bridge the gap, we adopt the mask-
wise merging scheme (denoted as per-mask) [8, 27], where
each object query generates a mask proposal. The per-mask
scheme significantly improves over the per-pixel scheme by
more than 2 AP in the TubeFormer-DeepLab framework.
Our large model TubeFormer-DeepLab-B4 with per-mask
scheme outperforms MaskProp, VisTR, and IFC, and per-
forms comparably with the best model Seq Mask R-CNN,
which relies on STM [19]-like structure to propagate mask
proposals through the whole sequence.

Notably, our model yields the best AR1 and AR10 (+3.9
and +3.0 AR better than the second best Seq Mask-RCNN
method, respectively), demonstrating the high segmentation
quality in our predictions. Also, TubeFormer-DeepLab em-
ploys a smaller clip value (T = 5), while other state-of-
the-art proposal-based approaches use a large value of clip
(T = 13 or 36).
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method backbone decoder STQ SQ AQ VPQ
Motion-DeepLab [24] ResNet-50 + dual ASPP [6] dual DeepLabv3+ decoder [7] w/ multi-heads 58.0 67.0 51.0 40.0
VPSNet [14] ResNet-50 + FPN [16] Mask R-CNN [11] style multi-heads 56.0 61.0 52.0 43.0

TF-DL-B1 ResNet-50 + axial-attention [22]† tube-transformer 70.0 76.8 63.8 51.1

Table 1. [VPS] KITTI-STEP val set results. †: Axial attention blocks [22] are used in the last two stages.

method backbone decoder mIoU VC8 VC16
TCB [18] ResNet-101 spatial-temporal OCRNet [28] + memory aggregation 37.8 87.9 84.0

TF-DL-B1 ResNet-50 + axial-attention [22]† tube-transformer 58.0 90.1 86.8

Table 2. [VSS] VSPW val set results. †: Axial attention blocks [22] are used in the last two stages.

method backbone decoder T AP AR1 AR10

MaskProp [2]

ResNet-50 + FPN [16] + HTC [5] Mask R-CNN [11] style
multi-heads
w/ mask refinement
postprocessing

13 40.0 - -
ResNet-101 + FPN [16] + HTC [5] 13 42.5 - -
ResNeXt-101 [25] + FPN [16] + HTC [5] 13 44.3 - -
ResNeXt-101 [25] + FPN [16] + HTC [5] + deform.STSN [3, 10] 13 46.6 - -

Seq Mask R-CNN [15]
ResNet-50 + FPN [16] Mask R-CNN [11] style

multi-heads
w/ many proposals

36 40.4 41.1 49.7
ResNet-101 + FPN [16] 36 43.8 46.3 52.6
ResNeXt-101 [25] + FPN [16] 36 47.6 46.3 56.0

VisTR [23]
ResNet-50

DETR [4] style transformer
36 36.2 37.2 42.4

ResNet-101 36 40.1 38.3 44.9

IFC [13]
ResNet-50 + FPN [16]

DETR [4] style transformer
5 41.0 43.5 52.7

ResNet-50 + FPN [16] 36 42.8 43.8 51.2
ResNet-101 + FPN [16] 36 44.6 44.0 52.1

STEm-Seg [1]
ResNet-50 + FPN [16] 3D Conv-based TSE [1]

w/ multi-heads
8 30.6 31.6 37.1

ResNet-101 + FPN [16] 8 34.6 34.4 41.6

TF-DL-B1 (per-pixel) ResNet-50 + axial-attention [22]†

tube-transformer

5 36.4 40.8 49.5
TF-DL-B1 (per-mask) ResNet-50 + axial-attention [22]† 5 38.8 44.0 51.4
TF-DL-B4 (per-pixel) ResNet-50-n4 + axial-attention [22]† 5 45.4 48.3 56.9
TF-DL-B4 (per-mask) ResNet-50-n4 + axial-attention [22]† 5 47.5 50.2 59.0

Table 3. [VIS] YouTube-VIS-2019 val set results. †: Axial attention blocks [22] are used in the last two stages. ResNet-50-n4 scales the
number of layers in stage-4 by 4 times (i.e., 24 blocks in total), resulting in a backbone with 104 layers.

2. Visualization

In Fig. 1, 2, and 3, we visualize how the proposed hier-
archical dual-path transformer performs attention for video
panoptic/semantic/instance segmentation tasks (VPS, VSS,
and VIS, respectively). We use input clips of three con-
secutive frames for visualization. For each sample, we se-
lect several output tubes of interest from the TubeFormer-
DeepLab prediction. In column-b, we probe the attention
weights between the selected tube-specific global memory
embeddings and all the pixels. Across all three tasks, we
observe the global memory attention is spatio-temporally
clustered for individual tube regions, while respecting dif-
ferent requirements among the tasks. That is, one global
memory answers for each semantic category in VSS, but
for each instance identity in VIS, while both cases appear
in VPS task.

In column-c, we select four latent memory indices and
visualize their attention maps. Commonly for all tasks,
some latent memory learns to spatially specialize on certain
areas (left vs right side of the scene) or attends to the tube

boundaries. Interestingly, we find that some latent mem-
ory focuses on relatively far-away region (Fig. 1c-bottom
right), which often requires more attention. Sometimes, it
has more interests to the moving object parts or small ob-
jects (e.g., moving arms and a road-block cone in Fig. 2c-
bottom left and bottom right, respectively).

The task-specific behavior of the latent memory can be
also compared between Fig. 2c and Fig. 3c. The latent
memory in VSS does not distinguish instances of a same
semantic class. In contrast, the attention is instance-specific
in VIS. As shown in Fig. 3c-top left, the occluded noses
of two elephants are highlighted, which is expected to help
the instance discrimination. Also, different latent memory
attends to a single, or different multiples of the instances.

Additionally, Fig. 4 visualizes our depth-aware video
panoptic segmentation results on SemKITTI-DVPS dataset,
where TubeFormer-DeepLab is able to generate temporally
consistent panoptic segmentation and monocular depth es-
timation results.

Finally, we attach our video prediction results for each
dataset in the supplementary materials (see other provided



(a) input frames (b) global memory attention (c) latent memory attention (d) video panoptic segmentation

two cars (left, right) and a person on the road.

three people (left, middle , right,) on the sidewalk.

Figure 1. [VPS] Visualization on KITTI-STEP sequence. From left to right: input frames (T=3), global memory attention, latent
memory attention, and video panoptic segmentation results. The global memory attention is selected for predicted tube regions of interest,
and the latent memory attention is selected for 4 (out of L=16) latent memory.

video files).

3. Limitations
Currently, the proposed TubeFormer-DeepLab performs

clip-level video segmentation with the clip value T = 2 (for
VPS and VSS) or T = 5 (for VIS). Our model thus per-
forms short-term tracking and may miss objects that have
track lengths larger than the used clip value. This limita-
tion is also reflected in the AQ (association quality) reported
in Tab. 1 of the main paper (i.e., KITTI-STEP test set re-
sults). We leave the question about how to efficiently in-
corporate long-term tracking to TubeFormer-DeepLab for
feature work.

In any case, our proposed TubeFormer-DeepLab
presents the first attempt to tackle multiple video segmenta-
tion tasks from a unified approach. We hope our simple and
effective model could serve as a solid baseline for future
research.

4. Dataset License
• ImageNet [21]: https://image-net.org/
download.php

• Cityscapes [9]: https://www.cityscapes-
dataset.com/license/

• COCO [17]: CC BY 4.0

• KITTI-STEP [24]: CC BY-NC-SA 3.0

• VSPW [18]: CC BY 4.0

• Youtube-VIS [26]: CC BY 4.0

• SemKITTI-DVPS [20]: CC BY-NC-SA 4.0
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(a) input frames (b) global memory attention (c) latent memory attention (d) video semantic segmentation

people, an instrument , a road-block, and trees.

people, horses, the ground, and a fence.

Figure 2. [VSS] Visualization on VSPW sequence. From left to right: input frames (T=3), global memory attention, latent memory
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(a) input frames (b) global memory attention (c) latent memory attention (d) video instance segmentation
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(a) input frames (b) video panoptic segmentation (c) monocular depth prediction

Figure 4. [DVPS] Visualization on SemKITTI-DVPS sequence. From left to right: input frames (T=3), video panoptic segmentation,
and monocular depth prediction results. As the attentions are very similar to those in KITTI-STEP (Fig. 1), here we focus on the depth
visualization.
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