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1. Introduction

Our supplemental material is organized in five major
sections. Section 2 documents an associated supplemen-
tary video. Sections 3 and 4 provide details regarding our
action recognition and video object segmentation experi-
ments, resp. Each of these sections is partitioned into an
initial subsection that presents implementation details, fol-
lowed by a series of subsections providing supplemental
empirical results and analyses. Finally, Section 7 docu-
ments all assets employed in our work. All references to
equations refer to equations defined in the main paper.

2. Supplemental video

We include an accompanying supplemental video as part
of the supplementary materials which can also be found
on our project page'. In this video, we show examples
of the static and dynamic pairs for both action recognition
and video object segmentation (VOS). The video is in MP4
format and approximately three minutes long. Layouts for
each sampling pair are described in detail followed by the
example video samples. The codec used for the realization
of the provided video is H.264 (x264).

3. Action recognition

In this section, we provide details for action recognition.
We begin by presenting implementation details for all mod-
els evaluated in the main submission. Subsequently, we
provide a supplementary series of experiments where we
consider various frame rates as input to the SlowFast net-
work [4], variation of the threshold, ), in the unit-wise met-
ric, (3), and the effect of the training dataset.

https://yorkucvil . github . io/Static-Dynamic—
Interpretability/

3.1. Implementation details

The main repository used for our action recognition ex-
periments is the SlowFast [4] repository®. This repository
contains dozens of pre-trained action recognition architec-
tures trained on multiple datasets. The only model taken
from a different repository is the TimeSformer [1], which
has its own codebase’ built upon the SlowFast repository.
For all models, we use the standard configuration files pro-
vided by the repository except for the following.

The FastOnly model is implemented by us based on the
SlowFast architecture found in the SlowFast repository. For
a fair comparison with the SlowFast model, the FastOnly
model is implemented using the same frame and sampling
rate as the SlowFast-Fast branch (32 total frames sampled
every two frames).

All models trained on Kinetics-400 [2] and Something-
Something-v2 [5] (SSv2) are taken directly from the Slow-
Fast repository, except for the FastOnly model. The Fas-
tOnly model is trained on Kinetics-400 for 40 epochs with
SGD, a weight decay of le-4, a batch size of 32 and a
base learning rate of 0.03 that decreases by a factor of 10
at epochs 15, 30 and 35. On SSv2, the FastOnly model is
trained for 25 epochs with SGD, weight decay of le-4, a
batch size of 32 and a base learning rate that is decreased
by a factor of 10 at epochs 10 and 20.

All models trained on Diving48 [9] are trained by us.
The FastOnly model is trained on Diving48 for 100 epochs
with SGD, weight decay of le-4, a batch size of 32 and a
base learning rate of 0.0375 that decreases by a factor of 10
at epochs 40, 60 and 80. The SlowOnly model is trained on
Diving48 for 100 epochs with SGD, weight decay of le-4, a
batch size of 32 and a base learning rate of 0.00375 that de-

’https://github.com/facebookresearch/SlowFast
3https : / / github . com / facebookresearch /
TimeSformer
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Figure 1. Static and dynamic bias analysis on SlowFast variants
with alternative sampling rates trained on Kinetics-400 [2] using
the layer-wise metric, (3). All models are trained with four frames
sampled every 16 frames (i.e. 4x 16). SF-Slow and SF-Fast denote
the representation taken before the fusion layer from the Slow and
Fast branches, respectively.

creases by a factor of 10 at epochs 40, 60 and 80. All models
trained with temporal frame shuffling (see Sec. 4.2.1 of the
main paper) are trained with the same hyperparameters as
their unshuffled counterparts.

We use standard augmentations that are found in the
SlowFast repository, which include random spatial crop-
ping and random temporal cropping, followed by resizing
to 224 x 224. The number of frames and sampling rate for
all models is 8 x 8 unless otherwise specified. At valida-
tion time, a single clip was spatially and temporally center
cropped. All models were trained on four NVIDIA Tesla
T4s. Training times for each model and dataset vary sig-
nificantly. Training the SlowFast model on the Diving48
dataset takes approximately 2.5 days which is the longest
training time among all considered models.

3.2. SlowFast frame rates

Figure 1 shows the static and dynamic units estimated
using the layer-wise metric, (1). The main paper examined
architectures with a frame number and sampling rate of 8 x8
while Fig. 1 shows SlowFast variants trained with a frame
number and sampling rate of 4 x 16. It can be seen that
the Fast branch injects dynamic information into the Slow
branch via the fast-to-slow cross connections. The last layer
of the SlowOnly model has 21.6% units (i.e. channels) en-
coding dynamics, while when trained jointly with the Fast
branch, the SF-Slow model has 24.2% dynamic units in the
final layer. This increase of 2.6% is similar to the one seen
with sampling parameters of 8 x 8, which saw an increase
of 3.3% in the last layer.

3.3. Varying thresholds

Figure 2 shows the static and dynamic unit-wise anal-
ysis, (3), with varying thresholds, A, for various action
recognition architectures. The FastOnly and SlowFast-Fast
models are the only ones that produce specialized dynamic
units which is consistent with the findings in the main pa-
per. Moreover, the SlowFast-Fast branch retains a signifi-
cant number of dynamic units even at the higher thresholds
(e.g. 0.8). This pattern further shows the efficacy of using
the two-stream architecture for capturing separate types of
information. Note that all models produce more residual
units as the threshold increases since few units have corre-
lation coefficients in the range 0.8 to 1.

3.4. Training dataset effect

In this section, we provide additional models trained on
SSv2 and Diving48. In the main paper, we showed that
SSv2 produces dynamic units and Diving48 produces resid-
ual units, while Kinetics-400 mainly produces static units.
To this end, we analyse SlowFast models trained on each
dataset using the unit-wise metric, (3), for A = 0.5 on the
Slow and Fast branches separately; see Fig. 3. The findings
from the main paper are consistent with those seen here.
Diving48 is the only dataset to produce a notable number
of residual units, which suggests that there are other factors
than static and dynamic that are important for classifying
dives in this dataset. We leave it for future work to explore
what these residual units capture. SSv2, on the other hand,
yields a large number of dynamic units regardless of the ar-
chitecture. Note that the Fast branch contains dynamic units
regardless of the dataset, again showing the efficacy of this
two-stream approach for separating static and dynamic in-
formation.

4. Video object segmentation

In this section, we provide details for video object seg-
mentation. We begin by presenting implementation details
for all models evaluated in the main submission. Subse-
quently, we provide a series of supplementary experiments
where we consider the effect of architectures on static vs.
dynamic encoding. For each architecture we (a) consider
the effect of the threshold, )\, in our unit-wise metric, (3), (b)
examine all fusion layers and (c) present supporting exper-
iments on a dataset that especially emphasizes the impor-
tance of motion in segmentation, as the objects of interest
are camouflaged in single frames, MoCA [&]. Finally, we
demonstrate the individual unit analysis on different VOS
datasets with varying thresholds, A, to provide additional
confirmation of our final conclusions.
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Figure 2. Estimates of the dynamic, static, joint and residual units using the unit-wise metric, (3), for the different action recognition

architectures at varying values of the threshold, A.
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Figure 3. Analyses of static and dynamic biases of action recog-
nition datasets using the unit-wise metric, (3), for the SlowFast
architecture with the number of frames and sampling rate of 8 x 8.
Slow and Fast represent the Slow branch and Fast branch of the
SlowFast model, respectively. The estimates are based on the
penultimate layer of each stream separately, before the concate-
nation of the representations.

4.1. Implementation details

In this subsection, we describe the implementation de-
tails for FusionSeg [ 7] modified version, MATNet [ 14] vari-
ants and the evaluation on MoCA [8]. In our modified ver-
sion of FusionSeg we follow the original in using a ResNet-
101 [6] backbone with five stages, the first being the early
convolutional layers and the rest being four ResNet-like
stages. However, unlike the original work, we apply the
fusion between both motion and appearance features on the
intermediate representations at stages two and five. As ex-
plained in the main submission, we make this adjustment to
allow for comparison with MATNet and RTNet that perform
fusion on the intermediate representations. We use 1 x 1
convolutional layers for the fusion, which take concatenated
features and output 256 and 2048 feature channels at stages
two and five, respectively. Similar to the original approach,
the segmentation decoder uses atrous spatial pyramid pool-
ing (ASPP), but we also use an encoder-decoder architec-
ture [3]. Specifically, we concatenate the features extracted
from the fusion of stage two and ASPP features to produce
the final segmentation mask.

Our FusionSeg model is trained with a batch size of
eight, using SGD with learning rate 0.001, along with a mo-
mentum of 0.9, and weight decay 1 x 10~%. Additionally,
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Figure 4. Estimates of the dynamic, static, joint and residual units using our metric for unit-wise analysis, (3), for the different VOS models
at various settings of the threshold, .
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Figure 5. Estimates of the dynamic, static, joint and residual units using our metric for unit-wise analysis, (3), A = 0.5 comparing MATNet
variants and RTNet at different fusion layers. Our modified version of FusionSeg has only two fusion layers (i.e. fusion layer two and five)
to be compared.

we use a “poly” learning rate policy using a power of 0.9. GPUs 1080 Ti) machine with batch size six (unlike the orig-
We use random scaling with scale randomly sampled be- inal MATNet that used batch two and no multi-GPU train-
tween (0.5, 2.0), random cropping with size 513 x 513 and ing), the rest of the training hyperparameters follow the
random horizontal flipping for data augmentation. We do original work [14]. We denote the original model provided
not perform pretraining for the motion stream, unlike what by the authors without finetuning or training on our side as
was proposed in the original paper. We make this choice be- “MATNet”, while reproduction of MATNet with training on
cause we focus on training the joint model directly on three multi-GPU and a batch size of six as “MATNet Ours”. We
different datasets to assess their effect. train a MATNet variant without boundary aware refinement

(BAR) modules that we call “MATNet NoBAR”, where we
MATNet variants are trained on a multi-GPU (with two



remove all BAR modules and the boundary loss. We also
experiment with another MATNet variant that does not train
on additional YouTubeVOS data [12], unlike the originally
proposed model, we call this version “MATNet NoYTB”.
We specifically introduce MATNet Ours to provide a MAT-
Net variant that is directly comparable to other variants that
we introduce (i.e. MATNet NoBAR and MATNet NoYTB),
as it has the same training paradigm, unlike the original
MATNet [14]. We evaluate the static and dynamic units for
these variants to investigate the reason behind the increased
dynamic units with respect to other models considered (i.e.
FusionSeg and RTNet). We make no modifications to RT-
Net and use the public version provided by the authors [10].
They provide a model with a ResNext50 backbone, which
we denote as “RTNet” throughout the paper. For all archi-
tectures, we use RAFT [11] to supply the optical flow esti-
mates used for sampling of static and dynamic pairs on the
stylized DAVIS16 validation dataset.

Finally, we describe the evaluation details on the Moving
Camouflaged Animals dataset (MoCA) [8]. We follow pre-
vious work by removing videos that contain no predominant
target locomotion, which produces a subset of 88 videos
for evaluation [13]. We evaluate using mean intersection
over union and success rate with varying IoU thresholds, 7,
ranging from 0.5 to 0.9. We evaluate our modified Fusion-
Seg, RTNet provided by the original work, and our MAT-
Net variants on MoCA. The original MATNet evaluation on
MoCA is reported in previous work [13]. It is worth noting,
that the original MATNet used data augmentation as hor-
izontal flipping during the inference and averaged predic-
tions from the original and flipped versions. To ensure fair
comparison with RTNet and FusionSeg on MoCA we dis-
able the data augmentation during inference when reporting
on MoCA.

4.2. Architectural effect

Figure 4 shows the unit-wise analysis, (3), on all studied
VOS architectures with various settings of the threshold, A,
for the late fusion layer (i.e. fusion layer five). We vary
the threshold, A, between 0.5 to 0.8. It is seen that the off-
the-shelf MATNet [14] consistently contains more dynamic
units than both RTNet [10] and our modified FusionSeg [7].
For RTNet, increased values of A yield an increased number
of static units at the expense of joint units, while the number
of dynamic units always remain small. For FusionSeg, both
dynamic and static units initially increase at the expense of
joint units as A increases; however, at the highest value of
A the majority of units become residuals. The pattern of
decreased numbers of joint units with increased values of
A arises because the requirement for units to be judged as
jointly encoding becomes increasingly stringent; see (3).

In further comparing the different MATNet variants (in-
cluding the variant that lacks boundary aware refinement
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Figure 6. The relative joint/dynamic units in the final fusion layer
compared with the mean intersection over union on MoCA for dy-
namically biased models (i.e. MATNet variants).

modules and the variant that lacks additional YouTubeVOS
training) to FusionSeg and RTNet, it is seen that the pro-
portion of dynamic units remains higher. This result sug-
gests that the source behind the increase in the number
of dynamic units in MATNet is the motion-to-appearance
cross connections, rather than additional data or boundary
refinement. It also shows for MATNet variants that with
higher settings of the threshold, )\, the joint encoding units
decrease and the specialized static/dynamic units increase.
Figure 5 shows the comparison among different VOS archi-
tectures on all fusion layers (i.e. fusion layers two, three,
four and five). It is seen that in fusion layers three, four and
five, MATNet consistently has more dynamic units com-
pared to FusionSeg and RTNet, which instead tend to have
more jointly encoding units. The same pattern was shown in
the main submission, albeit only for the final fusion layer.
It is also seen that MATNet tends to balance between the
specialized units of both static and dynamic factors.

Interestingly, however, in fusion layer two, FusionSeg
appears on par with MATNet in terms of dynamic units,
while it has fewer static units and more joint units. In com-
parison, RTNet tends to have the most unbalanced units of
all three models, which are skewed toward the jointly en-
coding units in the late fusion layers (i.e. three, four and
five). This pattern confirms that models with less ability
to capture dynamics in the late fusion layers (i.e. Fusion-
Seg and RTNet), generally tend to favour jointly encoding
units over specialized units, and have less balance between
both static and dynamic units. Thus, over all fusion lay-
ers and thresholds MATNet consistently has more balance
between dynamic and static units and generally more dy-
namic units than other models, making models with cross
connections that are not pretrained on saliency segmenta-
tion datasets one of the best to capture dynamics.



Success Rate

Method mloU
7=05 7=06 7=07 7=08 7=09 SRMcn

FusionSeg [7] Modified 42.3 47.9 43.6 359 24.2 94 39.2
RTNet [10] 60.7 67.9 62.4 53.6 434 23.9 50.2
MATNet [14] 64.2 71.2 67.0 59.9 49.2 24.6 54.4
MATNet Ours 67.3 75.9 70.8 61.9 48.6 26.0 56.6
MATNet NoBAR 65.1 73.6 68.0 58.9 44.7 21.5 53.3
MATNet NoYTB 54.7 59.9 53.5 44.0 31.0 134 40.3

Table 1. Evaluation of VOS models on MoCA [8]. Success rates are reported using different IoU thresholds, 7. FusionSeg, RTNet and
MATNet are the same versions reported in the main submission and can be compared directly. The three MATNet variants (MATNet Ours,
MATNet NoBAR and MATNet NoYTB) are trained on our side, while MATNet [14] is the original without our training; see Sec. 4.1.
Thus, while the three variants trained on our side are directly comparable, they cannot be compared directly with the original MATNet.

To further support the conclusion that MATNet’s archi-
tecture provides the best ability to capture dynamics, we
evaluate on a downstream task that requires capturing dy-
namics (i.e. segmenting moving camouflaged animals). In
particular, we evaluate all models on the MoCA subset re-
ported in previous work [13] and show results in Table 1.
It is seen that the original MATNet and MATNet Ours both
outperform RTNet and FusionSeg when motion is key to
segmentation (MoCA).

We now further pursue the main driving factors behind
MATNet’s improved performance on MoCA over alterna-
tive state-of-the-art models. Figure 6 shows the mean in-
tersection over union on MoCA with respect to the relative
joint to dynamic units in the final fusion layer in different
MATNet variants. For this experiment, we consider only the
MATNet variants trained on our side (MATNet Ours, MAT-
Net NoBAR and MATNet NoYTB), as they are directly
comparable, unlike the original MATNet; see Sec. 4.1. The
best MATNet variant on MoCA is the one trained with addi-
tional YouTubeVOS data and using the boundary aware re-
finement modules with auxiliary boundary losses (i.e. MAT-
Net Ours). Interestingly, having more dynamic units along
with maintaining a relative number of joint to dynamic units
above a certain threshold improves MoCA performance.
All MATNet variants generally have more dynamic units
in their fusion layers than the rest of the VOS models. This
suggests the driving reasons behind the state-of-the-art per-
formance of MATNet on MoCA encompasses two main
choices: (i) the inclusion of cross connections and (ii) addi-
tional training with YouTubeVOS.

4.3. Training dataset effect

In this section, we conduct additional experiments for
understanding the training dataset effect on our modified
version of FusionSeg [7] by augmenting the results shown
in the main submission by varying \. Figures 7 and 8 show
results obtained with our unit-wise metric, (3), for both fu-
sion layers five and two. It is seen that TAO-VOS yields

more specialized dynamic units than ImageNet VID with all
thresholds, A. It is also seen that TAO-VOS in fusion layer
five yields more specialized dynamic units with respect to
DAVIS16 on thresholds A = {0.5,0.6} and then starts to
be on-par with DAVIS16 at higher thresholds. In contrast,
in fusion layer two TAO-VOS yields more dynamic units
than DAVIS16. Consistently, it is further seen that there are
a higher number of residual units resulting from TAO-VOS
than the other two datasets in fusion layer five for thresh-
olds A = {0.5,0.6,0.7}. These results indicate that there
are also other factors beyond static and dynamic factors that
are captured when training on TAO-VOS. We leave it for fu-
ture work to explore what these residual units capture.

5. Neuron mask removal

To evaluate the effect of the estimated static and dynamic
biased units on overall performance, we conduct perturba-
tion experiments. In these experiments, we remove the top
k units (i.e. channels) that are biased towards the static or
dynamic factor during inference and evaluate the final ac-
curacy drop. The removal is done by setting all activations
to zero in the identified channels. We compare these static
or dynamic biased units with respect to randomly selected
channels. Figures 9 and 10 show the unit removal results for
the action recognition and video object segmentation exper-
iments, respectively. In action recognition we remove the
top-k static, dynamic and random channels from the final
layer in the SlowFast model trained on SSv2. We then eval-
uate on the SSv2 validation set and report the top-1 accu-
racy. As can be seen in Fig. 9, the dynamic factor maxi-
mally reduces the model’s performance, which may be be-
cause (i) the SlowFast model encodes a significant amount
of dynamic information in the fast branch and (ii) dynamics
are important to solve the SSv2 dataset. We conduct sim-
ilar experiments to video object segmentation for the four
fusion layers of the MATNet model trained on DAVIS and
YouTube-VOS. We evaluate on the MoCA dataset and re-
port the mean intersection over union (mloU). The results in
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Figure 7. Estimates of the dynamic, static, joint and residual units using the unit-wise metric, (3), for the different VOS datasets at various

settings of the threshold, A, for fusion layer five.
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Figure 8. Estimates of the dynamic, static, joint and residual units using the unit-wise metric, (3), for the different VOS datasets at various

settings of the threshold, A, for fusion layer two.

Fig. 10 consistently demonstrate that for every fusion layer
the factor with the highest impact on performance is the fac-
tor it is most biased toward, as examined earlier in the main
submission (Fig. 4). In both tasks, these experiments doc-
ument that masking out the top-%k channels based on our
proposed static/dynamic bias estimate can help us control
what the model is biased toward and consequently affect its
accuracy compared with randomly selected channels.

6. Computational load

We provide details of the models used in the paper in
regards to their computational load. For each model, we
list their FLOPs and parameter count in Table 2. We do not
observe any correlation between computational load and bi-
ases of the model and leave a deeper analysis of this connec-

tion for future work.

7. Assets

Action recognition. We use provided code and trained
weights from the SlowFast repository* and TimeSformer
repository”. SlowFast is licensed under the Apache 2.0 li-
cense’. TimeSformer is licensed under the CC-NC 4.0 In-

4nhttps://github.com/facebookresearch/SlowFast

Shttps / / github com / facebookresearch /
TimeSformer

Shttps://github.com/facebookresearch/SlowFast /
blob/main/LICENSE
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Figure 9. Top-k unit removal experiments for the static and dy-
namic factors with respect to random units for action recognition.
The final layer of the SlowFast model trained on the SSv2 dataset
is considered.

MATNet - Fusion Layer 2 MATNet - Fusion Layer 3

Action Recognition

Model Parameters (M) GFLOPs
C2D 243 25.6
13D 28.0 37.3

X3D-m 3.8 6.4

SlowOnly 325 54.8
FastOnly 0.6 7.0
SlowFast (8x8) 34.6 66.1
MViT 36.6 70.7
TimeSformer 121.6 196.1
Video Object Segmentation
Model Parameters (M) GFLOPs
MATNet 142.7 156.0
RTNet 277.2 309.7
FusionSeg 113.0 112.5
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Figure 10. Top-k unit removal experiments for the static and dy-
namic factors with respect to random units for video object seg-
mentation. The three fusion layers of the MATNet model trained
on DAVIS and YouTube-VOS are considered.

ternational license’ and Apache 2.0 license®. We use the
Kinetics-400”, SSv2'° and Diving48'! datasets.

Video object segmentation. We use provided code and
trained weights for MATNet'? and RTNet'®. No accom-
panied licences are provided with the aforementioned code.

Thttps / / github com / facebookresearch /
TimeSformer/blob/main/LICENSE

8https://github.com/facebookresearch/SlowFast /
blob/main/LICENSE

9https: / / github . com / cvdfoundation / kinetics -
dataset

10https://2Obn.com/datasets/somethingfsomethinq

Whttp://www.svel . ucsd.edu/projects/resound/
dataset.html

2https://github.com/tfzhou/MATNet

13https://qithub.com/OliverRensu/RTNet

Table 2. Computational loads of the action recognition and video
object segmentation models studied.

Additionally, we use the DAVIS16'4, TAO-VOS'” and Im-
ageNet VID'® datasets.
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