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• Section 1: Dataset details used in our experiments.

• Section 2: Training details for ablation studies.

• Section 3: Training details for baseline semi-
supervised approaches extended to videos domain.

• Section 4: Some additional discussions

• Section 5: Qualitative analysis of samples

1. Dataset
K400 [5]: Kinetics-400 contain youtube videos. For our
work, we conduct experiments on 1%, 2% and 3% of the
total dataset size. The total number of videos are 300K, out
of which 240K videos are for training. We pick unlabeled
subset from these videos randomly.

UCF101 (77) [6]: This dataset includes 77 activities of
UCF101 dataset which are not present in UCF101-24 action
detection datasets. The total number of videos for training
include around 7k. We use split-1 of UCF101 dataset.

2. Training Details for main algorithm and ab-
lations

2.1. Action Detection

Untrimmed: For training on untrimmed dataset, instead
of picking the annotated frames, the frames are picked at
random. Composition of labeled vs unlabeled subset is
20/80 which is similar to trimmed dataset experiments.

Additional loss for localization: In addition to the su-
pervised localization loss (BCEwithLogits), we incorporate
Dice loss [7] in our training. The reason behind choosing
Dice loss along with BCE with Logits loss is that it focuses
on class imbalance, it readjusts the pixel weights. Dice loss
maximizes the intersection between prediction and ground
truth, and at the same time minimizes the union. The dice
coefficient is equivalent to the F1 score. We take harmonic
mean over union and intersection. The harmonic mean is

Losses
f-mAP (%) v-mAP (%)
0.2 0.5 0.2 0.5

BCE 88.2 67.9 94.5 70.0
BCE+Dice 89.6 69.8 95.2 71.8

Table 1. Effect of using Dice loss

Epoch
f-mAP (%) v-mAP (%)
0.2 0.5 0.2 0.5

5 89.6 69.2 95.6 72.0
10 90.0 69.9 95.7 72.1
15 88.1 67.8 94.2 69.7

Table 2. Effect of introducing pseudo labels at different epochs

Frames
f-mAP (%) v-mAP (%)
0.2 0.5 0.2 0.5

3 89.1 69.8 95.3 71.9
5 90.0 69.9 95.7 72.1

Table 3. Using more number of frames

always biased to give a lower score. Thus, the Dice coeffi-
cient is more suitable. We can see the benefit of using Dice
loss alongwith BCE with logits in Table 1. There’s an abso-
lute gain of roughly 2% at 0.5 mAP. The scores are average
of three runs.

Selection of number of frames for variance calcula-
tion: For the calculation of variance, we take 5 frames
into consideration to calculate variance for single frame.
We compare the performance of 5 frames vs 3 frames. Ta-
ble 3 shows that calculation of variation over 5 frames out-
performed the variance using 3 frames proving that longer
temporal aspect does help. We see a jump in performance
especially at 0.2 metrics for both f-mAP and v-mAP.

Effect of introducing pseudo-labels at different
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stages: VideoCapsuleNet was proposed for supervised
learning where the video level class labels are used for cap-
sule masking during localization. The masked capsules are
then upsampled multiple time to get the localization mask.
The masking of capsules is optional and attaching a class
label to the bounding box helps the network to relate at-
tributes for that particular class. In our work, a single batch
contains labeled and unlabeled data. For labeled data, we
use the ground truth as in supervised. In case of the unla-
beled data, for first few epochs, we do not attach any label
to the bounding box. It’s because the network is not gener-
alized on the training dataset. After a couple of epochs, the
network is fine-tuned on the target dataset, then we predict
pseudo-labels for the unlabeled samples in the batch. Class
prediction is multiplied with the poses and then upsampled
to get the localization map. As the prediction becomes more
confident and accurate with the training, the prediction im-
proves with time. We pick epoch 10 in our training pro-
tocol to start introducing pseudo labels for the unlabeled
samples. (Table 2) If we start predicting pseudo labels too
early, then, we see a slight decrease in performance. In-
troducing pseudo labels at 15 makes it susceptible towards
dataset imbalance.

2.2. Video object segmentation

For LSTM approach, we consider 32 sequential frames
from a video. To get the intermediate frames, between pro-
vided annotated frames from the original dataset, we per-
form interpolation. We train the network for 50 epochs.

3. Training Details for semi-supervised base-
lines

For all of the baseline semi-supervised approaches, on
top of supervised classification loss, we did measure the
spatio-temporal localization loss proposed in our original
work, i.e., BCE with Dice loss on labeled samples.

MixMatch [1]: We generated two views one with a
weak augmentation and one with a string augmentation.
For weak augmentation, we just flip the original view. For
strong augmentation, a series of augmentation is randomly
applied such as multiscale cropping and random flipping,
etc. There’s a limitation of directly extending image ap-
proaches. The batch size of each labeled and unlabeled
dataset is eight.

Pseudo-label [3]: To get the results on pseudo-label,
we did three iterations of training. First iteration is on the
baseline subset that is 20% of the dataset. Next, we gener-
ate pseudo labels for the whole data, we pick the top 10%
based on confidence threshold. Remove the ones that over-
laps with the 20% labeled subset. Add remaining pseudo la-
bels as a training dataset in the next iteration. Then, finetune
on the dataset utilizing the pretrained weights of previous it-

Unlabeled f-mAP (%) v-mAP (%)

0.2 0.5 0.2 0.5

1x 86.7 64.8 93.5 65.6
2x 87.8 67.5 94.4 69.6
3x 88.3 69.3 94.7 71.0
4x 89.6 69.8 95.2 71.8

Full 89.6 69.8 95.2 71.8

Table 4. Varying the amount of unlabeled data from 20% to 80%.
Labeled data is kept constant at 20%.

Weights
UCF101-24 JHMDB-21

f-mAP v-mAP f-mAP v-mAP

Pre-trained 69.9 72.1 64.4 63.5
w/o Pre-trained 60.8 58.7 34.3 29.0

Table 5. Effect of using Pretrained weights. Results for 0.5 mAP.
w/o - without

eration. We perform three iterations and then evaluated to
get the final result.

Co-SSD(CC) [4]: This procedure is similar to training
with our classification consistency standalone training.

4. Discussions
Pretrained weights We assess the effect of utilizing pre-
trained weights in boosting performance. All of the previ-
ous approaches use 2-D or 3-D networks and are pretrained
on some dataset. 2-D networks are trained on ImageNet
and COCO dataset, whereas, most of the 3-D networks are
pretrained on Kinetics-400 [5] and Kinetics-600 [2]. Kinet-
ics datasets contains actions that incorporates sports actions
such as playing basketball, playing cricket, playing tennis
and more. From Table 5, we see that at 0.5 mAP, there’s a
roughly 10% decrease in performance. For JHMDB-21, the
performance drop is by a significant margin of 30%. This
shows the importance of utilizing pretrained weights espe-
cially for small scale datasets such as JHMDB-21.

Unlabeled Dataset: In table 4, we include performance
on 0.2 metrics alongwith 0.5 extending the table present in
original paper.

Data percentage (multiple seed) Multiple runs for dif-
ferent percentage of dataset. In the main paper, we show the
improvement with increase in the amount of labeled videos
is for only one seed variation. However, if the dataset is
small then there’s more variation in performance. We per-
form three different seed runs and show the results with
variance calculation in Table 7.



Experiment f-mAP v-mAP

0.2 0.5 0.2 0.5

Variance 89.2 ± 1.70 61.9 ± 1.90 94.1 ± 0.60 61.4 ± 1.35
Cyclic Variance 88.6 ± 1.90 63.0 ± 1.30 94.1 ± 0.80 61.5 ± 0.90
Variance + L2 87.9 ± 1.55 63.3 ± 1.01 94.6 ± 1.09 62.4 ± 1.05

Cyclic Variance + L2 89.9 ± 2.10 64.4 ± 1.25 95.4 ± 1.10 63.5 ± 0.65

Gradient 88.1 ± 1.25 63.2 ± 1.70 95.3 ± 0.35 63.1 ± 2.55
Gradient + L2 88.0 ± 1.30 63.1 ± 1.95 94.4 ± 0.90 62.2 ± 2.45

Table 6. An analysis on temporal constraints for consistency regularization using JHMDB-30% dataset. The gain is absolute to the base
case where only non-weighted L2 spatio-temporal consistency is utilized.

Composition f-mAP@0.5 v-mAP@0.5

5/95 58.8 ± 1.30 57.6 ± 1.75
8/92 63.5± 0.60 64.3 ± 0.40
10/90 65.1 ± 0.55 66.2 ± 0.70
15/85 67.7 ± 0.40 69.6 ± 0.80
20/80 69.3 ± 0.40 71.1 ± 0.10

Table 7. Seed variation (three runs) for different subset of data.

Augmentation
f-mAP (%) v-mAP (%)
0.2 0.5 0.2 0.5

HF 89.6 69.8 95.2 71.8
HF+MC 89.6 68.8 94.8 71.6

Table 8. Effect of using augmentations on UCF101-24. HF - Hor-
izontal flipping, MC - Multi-cropping.

Unlabeled f-mAP (%) v-mAP (%)

Dataset 0.2 0.5 0.2 0.5

Sup. (100) 89.4 69.2 95.3 71.9

UCF101(77) 91.7 74.8 96.5 78.1
K400 (1%) 89.7 71.2 95.0 72.6
K400 (2%) 90.5 73.1 96.4 76.2
K400 (3%) 91.0 73.8 96.8 75.8

Table 9. Use of extra data as a supervisory signal. Experiments on
UCF101-24.

Ablation study (multiple seed) Different seed runs for
ablations. The main paper discusses the mean score for JH-
MDB dataset. Since, it’s a small dataset and there’s an issue
of overfitting, here we include the table with variance for
JHMDB. (Table 6)

Spatial Augmentations: In addition to horizontal flip-
ping, we run experiments with some strong spatial to
see how it impacts classification consistency and spatio-
temporal consistency. To recognize the impact of augmen-
tations, we pick the baseline spatio-temporal consistency
model. In addition to horizontal flip, we include multi-scale
cropping with ratio varying from 0.7 to 1.0. From Table 8,
the scores are consistent except for f-mAP@0.5. We see
that there’s a drop by 1% at f-mAP@0.5.

Bigger subset of Kinetics: We did more experiments of
even bigger subsets of kinetics with 3 percent as unlabeled
dataset. We want to see how much large-scale we can go
and how much it impacts the gain in performance or does it
saturates after a point. From table 9, we see incorporating
3% of kinetics dataset reflects some gains for f-mAP, but,
there’s a performance drop for v-mAP.

5. Qualitative Analysis

Here, we include the results for multiple samples from
UCF101-24 datasets. Especially, we compare the output of
different semi-supervised approaches that served as base-
lines in the paper. There are six samples in Figure 1 to show
the robustness of proposed approach. The samples are a se-
quence of eight frames. The bounding box is shown if the
predicted localization has an overlap greater than or equal
to 0.5 with the ground truth localization map. If we look
into first sample, pseudo-label fails to cover the whole ac-
tor and classification consistency captures more area than
the ground truth. In sample 2 and 3, we can see that our
approach works better even for small objects present in the
scene. The actions are also rapidly changing across frames
in this video. In both the samples, our approach is able to
localize the actor with very high precision in comparison to
other two semi-supervised approaches. For sample 4 out-
puts, Co-SSD is capturing the rocks even though actor area
is dominant. Our results are very close to the ground truth.
From sample 5, we want to convey that when the actor is



stable and performing action at the same position, then, all
the three approaches correctly detects the location of actor.
In sample 6, Co-SSD and pseudo-label have a lot of mis-
predictions as compared to our approach. That shows the
robustness of using variance across frames.
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Figure 1. Performance for different semi-supervised approaches. The first column is the ground truth frame, second column depicts the
ground truth localization, then further two columns show the prediction by the baseline semi-supervised approaches pseudo-label [3] and
Co-SSD (CC) [4]. The final column is the overlap for our final approach.


