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S-1. Implementation

Compression network: We develop the compression network similar to the Cheng et al.’s network [11], but we make some
modifications to encode scalable bitstreams. Figure S-1 shows the architecture of the compression network, and Figure S-2
shows the detailed structure of the attention module that is simplified as a green block in Figure S-1.
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Figure S-1. Architecture of the compression and postprocessing networks, in which layers are shown in different colors depending on their
types. A gray block is a convolution layer, in which the kernel size and the number of channels are specified unless they are the default
parameters of 3× 3 and 192, respectively. A downward arrow indicates that the convolution layer performs downsampling with a stride of
2, while an upward arrow indicates a subpixel convolution layer with an upsample factor of 2. GDN and IGDN are a generalized divisive
normalization layer and its inverse version [S1]. The detailed structure of the attention module, depicted by a green block, is shown in
Figure S-2, and the postprocessing network gp, depicted by a purple block, is shown in Figure S-4.
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Figure S-2. Network structure of the attention module, where � indicates the element-wise product operation.

RD-prioritized transmission: In Figure 10 in the main paper, the same bitstream of DPICT for an image is reconstructed at
164 different rates. We apply the scalable coding from the (L − 5)th trit-plane to the Lth trit-plane. Since more significant
trit-planes (i.e. the nth trit-planes, n ≤ L−6) produce a very short bitstream in general, we encode them together as a coding
unit. Then, starting from the (L − 5)th trit-plane, all trits in each trit-plane are divided into 48 bins according to the RD
priorities. We find experimentally that the encoding of low-priority bins reduces the distortion only marginally. Therefore,
we encode those bins together as a coding unit. Figure S-3 shows which bins are grouped into a coding unit. For example, in
the (L− 2)th trit-plane, the 17 lowest-priority bins are encoded together, and thus 32 different coding units are available. By
summing up the number of coding units in each trit-plane, we have 164 = 1 + 3 + 16 + 16 + 32 + 48 + 48 different rates.

(𝐿 − 5)th trit 46

33(𝐿 − 4)th trit

33(𝐿 − 3)th trit

17(𝐿 − 2)th trit

(𝐿 − 1)th trit

𝐿th trit

High priority Low priority

Figure S-3. Dividing a trit-plane into coding units: each trit-plane is divided into 48 bins, and the low-priority bins in a gray block is
grouped into a coding unit.

Postprocessing networks: Figure S-4 shows the detailed architecture of the postprocessing networks gp. We train two
postprocessing networks, targeting at different bit-rates: The first gp targets at X̂n for n ∈ [0, L− 2.9], and the second gp for
n ∈ (L− 2.9, L− 1.8]. To train the two post-processing networks, n in (20) is set to L− 3 and L− 2, respectively.

Reconstructed image

H ×W × 3

Refined image

H ×W × 3

1×1 1×1 1×1 1×1 1×1 1×1 1×1

Figure S-4. Network structure of the postprocessing networks gp.
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S-2. Computational Complexity
We compare DPICT with Minnen et al. [30] and Cheng et al. [11] in terms of runtime and FLOPs in Table S-1. The

experiments are done with an AMD Ryzen 9 3900X CPU and an NVIDIA GeForce RTX 3090 GPU. Note that we develop
DPICT based on the Cheng et al.’s network. For DPICT, the encoding is done only once for all 164 rates in Figure 10, and
the decoding complexity is averaged over the 164 rate runs. For both encoding and decoding, DPICT is faster than [11],
although it requires similar FLOPs. The autoregressive convolution in [30] and [11] is time-consuming, while the trit-plane
coding is done efficiently and supports GPU parallel computing. Figure S-5 plots the decoding times for the 164 rates. Even
at the highest rate, DPICT can reconstruct an image within 6 seconds.

Table S-1. Runtime and GFLOPs comparison of the proposed DPICT with conventional codecs on the Kodak dataset.

Minnen et al. [30] Cheng et al. [11] DPICT
Encoding Decoding Encoding Decoding Encoding Decoding Postprocessing

Runtime (s) 4.452 11.47 3.035 8.695 1.108 2.728 0.051
GFLOPs 35.12 133.6 159.1 228.9 154.2 224.0 333.6
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Figure S-5. Running time of the proposed DPICT algorithm for the 164 rates on the Kodak dataset.

S-3. Postprocessing Network Complexity
As the tiny red bars in Figure S-5 indicate, the postprocessing demands only a small fraction of the runtime; most of the

runtime is spent on the trit-plane decoding. In Figure S-6, we compare the postprocessing runtimes, FLOPs, and PSNR gains,
when the number of channels of the postprocessing network is reduced by ratios of 0.75, 0.50, and 0.25, respectively.
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Figure S-6. Performance gains of postprocessing networks according to their complexities on the Kodak dataset. Runtimes and GFLOPs
of the postprocessing networks are specified at the top right corner.
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S-4. Additional Postprocessing Networks
In the default mode, we train two postprocessing networks gp, targeting at X̂n for n ∈ [0, L − 2.9] and for n ∈ (L −

2.9, L−1.8], respectively. To train the two gp, we use X̂L−3 and X̂L−2 by setting n to L−3 and L−2 in (20). Additionally,
we train three more gp using X̂L−5, X̂L−4, and X̂L−1. Figure S-7 compares the RD curves of the five postprocessing
networks with those of the baseline without using any postprocessing network. We see that each postprocessing network
improves image qualities over a limited range of rates only.

P
S

N
R

 (
d

B
)

40

35

30

25

bpp0.25 0.50 0.750.00
20

1.251.00

M
S

-S
S

IM
 (

d
B

)

24

20

15

10

bpp0.25 0.75 1.000.00
3

(a) RD curves (PSNR) 

(b) RD curves (MS-SSIM) 

Without 𝑔𝑝

𝑔𝑝, 𝑛 = 𝐿 − 1

𝑔𝑝, 𝑛 = 𝐿 − 2

𝑔𝑝,  𝑛 = 𝐿 − 3

𝑔𝑝,  𝑛 = 𝐿 − 4

𝑔𝑝,  𝑛 = 𝐿 − 5

Without 𝑔𝑝

𝑔𝑝, 𝑛 = 𝐿 − 1

𝑔𝑝, 𝑛 = 𝐿 − 2

𝑔𝑝,  𝑛 = 𝐿 − 3

𝑔𝑝,  𝑛 = 𝐿 − 4

𝑔𝑝,  𝑛 = 𝐿 − 5

1.250.50

5

Figure S-7. RD performance comparison of the five postprocessing networks on the Kodak dataset.
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Figure S-8 plots the PSNR and MS-SSIM gains of each postprocessing network in comparison with the baseline ‘Without
gp’ in Figure S-7. The postprocessing network trained with X̂L−1 improves the performances over a wide range of rates,
but the improvement is limited to maximum 0.2 dB in PSNR. The network trained with X̂L−4 is only applicable to a narrow
range of rates, and the network trained with X̂L−5 improves the performance negligibly over an even narrower range. In
contrast, the two networks trained with X̂L−2 and X̂L−3 improve image qualities meaningfully over relatively wide ranges.
This is why we use these two networks in the default mode.
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Figure S-8. Performance gains of each postprocessing network in comparison with the baseline on the Kodak dataset.
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S-5. Lagrangian Multiplier λ

In the default mode, we set λ = 5 in the loss function in (5). We also train the compression network using λ ∈
{160, 40, 10, 2.5, 0.625} and compare the RD performances in Figure S-9. In this test, the postprocessing networks are
not used. Regardless of λ, the proposed DPICT supports FGS. However, a smaller λ can support scalability over a wider
range of rates in general. We select λ = 5 because of its excellent RD performance over a relatively wide range of rates.

P
S

N
R

 (
d

B
)

42

40

35

30

bpp0.25 0.50 0.750.00
25

1.25 1.50 1.75 2.00 2.251.00

𝜆 = 160

𝜆 = 40

𝜆 = 10

𝜆 = 5

𝜆 = 2.5

𝜆 = 0.625

P
S

N
R

 (
d

B
)

27

25

23

21

bpp0.03 0.05 0.070.01
19

𝜆 = 160

𝜆 = 40

𝜆 = 10

𝜆 = 5

𝜆 = 2.5

𝜆 = 0.625

(a) RD curves (PSNR) 

(b) RD curves at low rates (PSNR) 

Figure S-9. RD performance comparison according to various settings of λ on the Kodak dataset.
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S-6. Training Using MS-SSIM Loss
As done in [6], we train the compression network by replacing the distortion term `D of the loss function in (5) with the

MS-SSIM loss
`D(X, X̂) = (1−MS-SSIM(X, X̂)).

Figure S-10 compares the RD performances of networks optimized for the MS-SSIM loss and for the mean squared error
(MSE) loss, respectively. In this test, the postprocessing networks are not used. As expected, the models optimized with the
MS-SSIM loss provide better MS-SSIM performances than those optimized with the MSE loss.

P
S

N
R

 (
d

B
)

40

35

30

25

bpp0.25 0.50 0.750.00
20

1.751.00

M
S

-S
S

IM
 (

d
B

)

28

20

15

10

bpp
3

(a) RD curves (PSNR) 

(b) RD curves (MS-SSIM) 

𝜆 = 10, MSE optimization

𝜆 = 2.5, MSE optimization

𝜆 = 0.004, MS-SSIM optimization

𝜆 = 0.001, MS-SSIM optimization

5

25

1.25 1.50

0.25 0.50 0.750.00 1.751.00 1.25 1.50

𝜆 = 10, MSE optimization

𝜆 = 2.5, MSE optimization

𝜆 = 0.004, MS-SSIM optimization

𝜆 = 0.001, MS-SSIM optimization

Figure S-10. RD performance comparison of models trained with the MS-SSIM loss and with the MSE loss, respectively.
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S-7. Different Compression Networks
The proposed DPICT algorithm can also be applied to other compression networks. To verify this, we conduct experiments

using two more compression networks: Ballé et al.’s network [6] and Minnen et al.’s network [30]. For Minnen et al.’s
network, we remove the autoregressive module because of the reason specified in Section 4.1 in the main paper. For each
network, we use the implementation of the compressAI library [7]. Figure S-11 shows the results. Each RD curve of
the existing networks, depicted by dashed lines, is obtained by several fixed-rate models. On the contrary, each RD curve
of DPICT, in a solid line, is obtained by a single model. Note that DPICT supports FGS at the cost of only slight RD
performance degradation.
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Figure S-11. DPICT is applied to Ballé et al.’s network [6] and Minnen et al.’s network [29]. In contrast to these existing networks, DPICT
supports FGS at the cost of only slight performance degradation.
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S-8. More Qualitative Results
• Figures S-12∼S-14 compare reconstructed images at similar rates.

• Figures S-15∼S-21 show images that are reconstructed progressively from a single bitstream.

• Figure S-22 and Figure S-23 show the impacts of the postprocessing networks gp. For easier comparison, improvement
maps are also provided.

JPEG DPICTJPEG2000Original image

0.130 / 21.08 / 7.80 0.130 / 33.31 / 14.460.130 / 29.84 / 11.21bpp / PSNR / MS-SSIM(dB)

0.250 / 26.73 / 9.84 0.250 / 40.57 / 21.560.252 / 34.47 / 15.12bpp / PSNR / MS-SSIM(dB)

0.159 / 24.36 / 11.21 0.155 / 34.83 / 14.650.160 / 34.36 / 13.89bpp / PSNR / MS-SSIM(dB)

Figure S-12. Qualitative comparison of reconstructed images at similar rates in the CLIC dataset.
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JPEG DPICTJPEG2000

0.240 / 22.92 / 6.90 0.239 / 28.40 / 11.950.240 / 26.95 / 9.76bpp / PSNR / MS-SSIM(dB)

Original image

0.331 / 22.01 / 7.15 0.330 / 28.64 / 12.840.332 / 27.00 / 10.76bpp / PSNR / MS-SSIM(dB)

0.415 / 23.60 / 10.60 0.401 / 30.62 / 15.770.406 / 29.61/ 13.95bpp / PSNR / MS-SSIM(dB)

0.678 / 28.71 / 13.90 0.677 / 41.28 / 22.360.677 / 39.05 / 19.30bpp / PSNR / MS-SSIM(dB)

0.908 / 23.61 / 11.91 0.906 / 33.39 / 19.190.909 / 31.18 / 15.04bpp / PSNR / MS-SSIM(dB)

0.343 / 22.61 / 7.46 0.343 / 28.31 / 12.710.347 / 26.88 / 10.28bpp / PSNR / MS-SSIM(dB)

Figure S-13. Qualitative comparison of reconstructed images at similar rates in the Kodak dataset.
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JPEG DPICTJPEG2000

0.676 / 21.60 / 9.21 0.672 / 28.68 / 16.190.685 / 27.06 / 13.17bpp / PSNR / MS-SSIM(dB)

Original image

0.230 / 32.20 / 11.37 0.228 / 35.70 / 15.630.229 / 34.86 / 14.37bpp / PSNR / MS-SSIM(dB)

0.083 / 17.65 / 6.53 0.081 / 32.65 / 14.110.084 / 31.34 / 12.79bpp / PSNR / MS-SSIM(dB)

0.168 / 19.42 / 9.12 0.167 / 33.40 / 16.660.171 / 30.19 / 13.25bpp / PSNR / MS-SSIM(dB)

0.370 / 24.94 / 8.63 0.369 / 31.76 / 15.370.369 / 30.42 / 13.54bpp / PSNR / MS-SSIM(dB)

0.103 / 15.57 / 6.29 0.103 / 31.84 / 14.690.104 / 29.95 / 12.34bpp / PSNR / MS-SSIM(dB)

0.885 / 25.15 / 11.14 0.885 / 33.01 / 17.920.886 / 31.07 / 14.41bpp / PSNR / MS-SSIM(dB)

Figure S-14. Qualitative comparison of reconstructed images at similar rates in the CLIC dataset.
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Original image L – 2.7L – 2.8L – 3L – 3.3L – 3.6

bpp / PSNR 0.099 / 30.490.074 / 28.800.044 / 26.900.037 / 26.160.031 / 24.96

L – 2.5 L – 1.8L – 1.9L – 2L – 2.1L – 2.3

0.116 / 31.42 0.208 / 33.440.187 / 33.050.153 / 32.450.131 / 31.980.126 / 31.83

L – 1.7 LL – 0.5L – 0.9L – 1L – 1.4

0.267 / 34.64 0.834 / 40.450.816 / 40.400.551 / 38.300.404 / 37.070.363 / 36.67

Original image

bpp / PSNR 0.099 / 28.650.074 / 27.680.044 / 26.030.037 / 25.320.031 / 24.82

0.116 / 29.27 0.208 / 31.700.188 / 31.160.154 / 30.300.131 / 29.730.126 / 29.60

0.269 / 32.91 0.836 / 38.540.818 / 38.470.551 / 36.510.407 / 35.020.363 / 34.43

(a) DPICT

(b) JPEG2000

Figure S-15. Qualitative comparison of progressively reconstructed images at various rates in the Kodak dataset.
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Original image L – 2.7L – 2.8L – 3L – 3.3L – 3.6

bpp / PSNR 0.144 / 29.100.109 / 27.980.055 / 25.730.044 / 24.960.035 / 23.71

L – 2.5 L – 1.8L – 1.9L – 2L – 2.1L – 2.3

0.165 / 29.62 0.297 / 31.160.266 / 30.870.218 / 30.400.185 / 29.970.178 / 29.89

L – 1.7 LL – 0.5L – 0.9L – 1L – 1.4

0.387 / 31.97 1.355 / 38.761.182 / 37.900.824 / 35.860.676 / 35.120.576 / 34.31

Original image

bpp / PSNR 0.144 / 27.270.109 / 26.420.056 / 24.350.044 / 23.800.035 / 23.19

0.165 / 27.80 0.300 / 29.910.270 / 29.520.219 / 28.760.186 / 28.250.180 / 28.14

0.390 / 30.97 1.355 / 37.421.185 / 36.530.828 / 34.320.676 / 33.370.577 / 32.60

(a) DPICT

(b) JPEG2000

Figure S-16. Qualitative comparison of progressively reconstructed images at various rates in the Kodak dataset.
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bpp / PSNR 0.120 / 30.040.087 / 28.540.045 / 26.360.038 / 25.810.032 / 24.88

0.139 / 30.64 0.268 / 32.390.236 / 32.030.187 / 31.420.155 / 30.960.150 / 30.88

0.354 / 33.57 1.221 / 39.701.049 / 38.810.701 / 36.600.554 / 35.790.500 / 35.43

Original image

bpp / PSNR 0.121 / 28.860.087 / 27.980.045 / 26.330.038 / 25.930.032 / 25.45

0.139 / 29.24 0.269 / 31.210.238 / 30.780.188 / 30.030.155 / 29.500.150 / 29.43

0.357 / 32.17 1.222 / 37.781.055 / 36.990.702 / 34.930.555 / 33.870.502 / 33.44

Original image L – 2.7L – 2.8L – 3L – 3.3L – 3.6

L – 2.5 L – 1.8L – 1.9L – 2L – 2.1L – 2.3

L – 1.7 LL – 0.5L – 0.9L – 1L – 1.4

(a) DPICT

(b) JPEG2000

Figure S-17. Qualitative comparison of progressively reconstructed images at various rates in the Kodak dataset.
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bpp / PSNR 0.091 / 30.940.068 / 29.690.037 / 27.600.033 / 27.190.028 / 25.99

0.104 / 31.44 0.216 / 33.440.188 / 33.000.143 / 32.260.114 / 31.720.110 / 31.64

0.291 / 34.87 1.037 / 41.290.914 / 40.420.584 / 37.800.437 / 36.760.394 / 36.42

Original image

bpp / PSNR 0.091 / 29.340.068 / 28.530.037 / 26.980.033 / 26.720.030 / 26.51

0.104 / 29.79 0.216 / 32.370.188 / 31.850.143 / 30.840.114 / 30.060.111 / 29.98

0.219 / 33.43 1.039 / 39.060.915 / 38.440.588 / 36.330.437 / 35.030.394 / 34.61

Original image L – 2.7L – 2.8L – 3L – 3.3L – 3.6

L – 2.5 L – 1.8L – 1.9L – 2L – 2.1L – 2.3

L – 1.7 LL – 0.5L – 0.9L – 1L – 1.4

(a) DPICT

(b) JPEG2000

Figure S-18. Qualitative comparison of progressively reconstructed images at various rates in the Kodak dataset.
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Original image L – 2.7L – 2.8L – 3L – 3.3L – 3.6

bpp / PSNR 0.079 / 32.440.062 / 30.880.041 / 28.970.035 / 28.120.030 / 27.16

L – 2.5 L – 1.8L – 1.9L – 2L – 2.1L – 2.3

0.089 / 33.07 0.170 / 35.310.151 / 34.860.120 / 34.120.101 / 33.500.097 / 33.40

L – 1.7 LL – 0.5L – 0.9L – 1L – 1.4

0.219 / 36.46 0.705 / 41.910.682 / 41.840.461 / 39.620.315 / 38.220.278 / 37.84

Original image

bpp / PSNR 0.080 / 30.370.062 / 29.510.041 / 28.090.035 / 27.480.030 / 26.87

0.089 / 30.76 0.172 / 33.030.155 / 32.700.121 / 31.770.102 / 31.280.099 / 31.16

0.219 / 34.03 0.724 / 39.250.685 / 38.980.480 / 37.320.317 / 35.470.283 / 34.97

(a) DPICT

(b) JPEG2000

Figure S-19. Qualitative comparison of progressively reconstructed images at various rates in the CLIC dataset.
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Original image L – 2.7L – 2.8L – 3L – 3.3L – 3.6

bpp / PSNR 0.054 / 33.150.041 / 31.140.028 / 29.490.024 / 28.510.021 / 27.67

L – 2.5 L – 1.8L – 1.9L – 2L – 2.1L – 2.3

0.061 / 33.83 0.127 / 35.600.111 / 35.360.081 / 34.600.066 / 34.040.064 / 34.00

L – 1.7 LL – 0.5L – 0.9L – 1L – 1.4

0.162 / 36.57 0.603 / 38.450.569 / 38.390.352 / 37.650.211 / 36.960.184 / 36.76

Original image

bpp / PSNR 0.054 / 32.570.041 / 31.690.028 / 30.500.024 / 29.850.021 / 29.42

0.061 / 32.95 0.130 / 34.860.111 / 34.540.081 / 33.680.066 / 33.120.064 / 33.07

0.165 / 35.34 0.615 / 37.260.571 / 37.180.369 / 36.550.218 / 35.870.184 / 35.57

(a) DPICT

(b) JPEG2000

Figure S-20. Qualitative comparison of progressively reconstructed images at various rates in the CLIC dataset.
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bpp / PSNR 0.090 / 30.870.066 / 29.750.033 / 27.420.029 / 27.110.025 / 26.31

0.105 / 31.32 0.196 / 32.970.173 / 32.970.139 / 32.020.117 / 31.560.113 / 31.50

0.260 / 34.30 0.899 / 39.700.876 / 39.610.574 / 37.540.428 / 36.540.379 / 36.13

Original image

bpp / PSNR 0.091 / 29.740.066 / 29.000.033 / 27.490.029 / 27.160.025 / 26.78

0.106 / 30.08 0.200 / 31.870.177 / 31.490.141 / 31.490.117 / 30.300.114 / 30.23

0.266 / 32.74 0.923 / 37.910.889 / 31.730.585 / 35.790.436 / 34.600.400 / 34.26

Original image L – 2.7L – 2.8L – 3L – 3.3L – 3.6

L – 2.5 L – 1.8L – 1.9L – 2L – 2.1L – 2.3

L – 1.7 LL – 0.5L – 0.9L – 1L – 1.4

(a) DPICT

(b) JPEG2000

Figure S-21. Qualitative comparison of progressively reconstructed images at various rates in the CLIC dataset.
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Figure S-22. Comparison of reconstructed images before and after the postprocessing in the Kodak dataset. Improvement maps are also
provided.
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Figure S-23. Comparison of reconstructed images before and after the postprocessing in the CLIC dataset. Improvement maps are also
provided.
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