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Al. Evaluation Metrics
Al.1. Occlusion order recovery

We evaluate the occlusion order of every instance pair
using recall, precision, and F1 score. In particular, we report
the accuracy of predicting which of the two instances is an
occluder, as done in OrderNetM*! [12] and PCNet-M [11].

Recall is computed as the number of correctly predicted
occluding orders divided by the number of ground truth oc-
cluding orders. Precision is the number of correctly predicted
occluding orders divided by the total number of predicted
occluding orders. F1 score is the harmonic mean of precision
and recall. The equation of Recall, Precision and F1 score
are defined as follows:
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where o and o’ denote ground truth and predicted occlusion
order, and 1 is an indicator function.

A1l.2. Depth order recovery

We evaluate depth order recovery accuracy using
Weighted Human Disagreement Rate (WHDR) [1], which
represents the percentage of weighted disagreement between
ground truth d and predicted depth order d’. The weights are
proportional to the confidence of each annotation. Here, we
use the inverse of count multiplied by the minimum number
of participants. WHDR evaluates {closer, equal, farther}
relation on each of {distinct, overlap, or all} categories sepa-
rately; which is defined as follows:
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A1.3. Disparity map prediction

For the disparity map prediction on the KITTI dataset [4],
we evaluate the performance of our InstaDepthNet and Mi-
DasS [9] using following metrics:
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where D and D’ denote ground truth and predicted depth
maps, and G indicates the pixels whose ground truth values
are available.

A2. Additional results

A2.1. Bidirectional occlusion order

We conduct experiments with the INSTAORDER dataset to
verify the effect of bidirectional occlusion orders. We com-
pare the accuracy with and without using the bidirectional
occlusion orders for both training and testing (Table A1). In-
tuitively, classifying smaller occlusion order categories (no
occlusion, A—B, B—~A) seems more manageable, but meth-
ods not using bidirectional order reported lower scores than
those using bidirectional order. We speculate that bidirec-
tional order helps to distinguish ambiguous ordering cases.



Occ. order ‘ Occ. acc. 1 Depth WHDR |

Methods No Uni Bi ‘ Recall Prec. F1 Distinct Overlap  All
PCNet-M [11] v v 62.23 57.74 52.28 - - -
OrderNet™* [12] v v 88.68 6290 66.23 - - -
InstaOrderNet°® v v 89.23 67.08 69.34 - - -
InstaDepthNet*¢ v v 79.76  89.39 78.13 7.09 23.46 12.79
PCNet-M [11] v v Vv | 59.19 7642 63.02 - - -
OrderNetMT (ext) | v v v | 8493 7821 7751 - - -
InstaOrderNet°® v v v | 89.39 79.83 80.65 - - -
InstaDepthNet*¢ v v v | 8489 9134 85.01 7.00 2329 12.72

Table Al. Ablation study of utilizing bidirectional occlusion orders for occlusion and depth order prediction tasks.

Loss weights InstaOrder DIW
Lio Laisp Ls || WHDR Distinct | WHDR Overlap| WHDR All| | Correctt Wrong| WHDR |
1 0 0.1 7.24 23.99 13.17 65,270 9,171 12.32
1 1 0 7.14 23.64 13.00 65,277 9,164 12.30
1 1 0.1 7.25 23.34 12.94 65,317 9,124 12.26

Table A2. Ablation study on losses applied to InstaDepthNet".

A2.2. Loss functions

We conduct an ablation study on loss functions to validate
the effectiveness of our proposed instance-wise disparity
loss. We train InstaDepthNet? with varying losses using
INSTAORDER training set. Then we report WHDR using
INSTAORDER validation set and DIW test set. Ly, is depth
order loss, Lg;s, is the proposed instance-wise disparity
loss, and L is edge-aware smoothness loss (Sec 4.2 in the
main paper). Experimental result (Table A2) shows that
accuracy degraded without Lg;,, or L,. Especially, the
absence of Lg;,, degraded the accuracy by a large margin,
which demonstrates the usefulness of the proposed instance-
wise disparity loss.

A3. INSTAORDER Information
A3.1. License

We constructed the INSTAORDER dataset utilizing COCO
2017 [7] images and instance masks. COCO 2017 annota-
tions are licensed under a CC BY 4.0 license. Image source
of COCO 2017 is Flickr, and the copyrights follow Flickr’s
terms of use'. Similarly, our annotations in INSTAORDER
are licensed under a CC BY 4.0 license.

A3.2. Guideline

We provide a guideline to annotators: we ask them to
annotate only semantically meaningful instances and to con-
sider the entire structure of instances. Some instance pairs

"https://www.flickr.com/creativecommons/

are unclear to annotate occlusion and depth order. For ex-
ample, (i) a collage image (multiple photos appear in one
photo) and (ii) objects shown on television, magazine, or
mirror. Images of case (i) are discarded, and instances in
case (ii) are annotated as equally distant without occlusion.
To eliminate the bias from the image sequence, we provide
randomly shuffled images for each annotator.

A3.3. Wages

We annotated INSTAORDER by crowd-sourcing, and the
total amount of money given to workers is $35,000. The
workers are paid based on the number of annotations. Before
the crowd-sourcing begins, we monitor unprofessional work-
ers and measure the average time taken for one annotation to
set the proper reward. We set different rewards for occlusion
and depth order annotation based on the time.

After crowd-sourcing finishes, we check the actual an-
notation times by crowd workers. On average, it took 2.68
seconds for a single occlusion order annotation and 5.05
seconds for a single depth order annotation. With this speed,
the hourly rewards we give are $6 for the occlusion order
task and $4.5 for the depth order task. We also provide $45
for each of the top 50 depth order annotators to promote
the task. This reward design motivated crowd workers, and
our task was popular on the crowd-sourcing platform. As a
result, a total of 3,659 workers participated in the task, and
the annotation job just took a month.
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Figure Al. Overview of the proposed INSTAORDER dataset.
A3.4. Data example NG —

As noted, INSTAORDER is annotated upon COCO
2017 [7] dataset, and therefore only the json file is pro-
vided (Figure A1, a). For an image (image_id), five instances
(instance_ids) with class labels are from the COCO dataset.
With this information, we denote the occlusion order as ”oc-
cluder_id < occludee_id”, and for bidirectional order "A<B &
B<A” notation is used. Similarly, depth order is denoted as
“closer_id < farther_id” and for equal depth ”A=B” notation
is used. Besides the orders, we also provide the metadata
such as count and overlap. As a result, we can generate
occlusion and depth graphs (Figure A1, b).

A4. Implementation Details
A4.1. Training details

We train InstaOrderNet with SGD optimizer [2] for S8K
iterations. The initial learning rate set to 0.001 is decayed by
0.1 after 32K and 48K iterations. InstaOrderNet use ResNet-
50 [6] initialized with Xavier init [5]. We use a batch size of
128 distributed over four Nvidia TITAN RTX GPUs.

InstaDepthNet consists of two heads: the order prediction
head and the depth map prediction head. The order predic-
tion head uses ResNet-50 [6] and the depth map prediction
head uses MiDaS-v2 [9]. Similar to InstaOrderNet, ResNet-
50 [6] is utilized with Xavier init [5]. For MiDaS-v2 [9],
we adopt pre-trained weights” provided by the authors. We
train InstaDepthNet with a batch size of 48 using four Nvidia
V100 GPUs. The initial learning rate is set to 0.0001.

2https://github.com/intel-isl/MiDa$
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Figure A2. InstaOrderNet model architecture.
A4.2. InstaOrderNet architecture

InstaOrderNet (Figure A2) takes pairwise instance masks
(M4, Mp) and an image (/) as input and outputs their
instance-wise orders. InstaOrderNet uses ResNet-50 [6]
as noted. Here we denote the feature size by [height,
width, channel].
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Figure A3. InstaDepthNet! model architecture.

A4.3. InstaDepthNet architecture

InstaDepthNet! (Figure A3) takes pairwise instance
masks (M4, Mp) and an image (/) as input and outputs
their depth order(d;‘ ) along with a disparity map (D). The
depth order prediction head uses ResNet-50 [6], and the dis-
parity map prediction head is MiDaS [9]. Please refer to the
paper by Xian et al. [10] for a detailed explanation of MiDaS
architecture.

InstaDepthNet architecture is modular because the order
prediction head can be used optionally depending on the
requirements at test time. Specifically, InstaDepthNet® can

produce a dense disparity map even when instance masks
are unavailable, such as DIW [3] dataset.

A4.4. Input resolution.

For the networks that produce depth order (InstaOrder?,
InstaOrder®¢, InstaDepthNet! and InstaDepthNet®), we set
image resolution as 384 x 384 by following the MiDaS [9].
On the other hand, for the network that does not produce
depth order (InstaOrderNet®), we set the input size as de-
scribed in PCNet-M [11]. Inputs of InstaOrderNet® are
patches that are adaptively cropped to contain objects at
the center, then resized to 256 x 256 at the train and test time.



AS. License of Other Assets

COCO 2017 [7] annotations are licensed under a CC BY
4.0 license. Image source of COCO 2017 is Flickr, and
the copyrights follow Flickr’s terms of use’. We conducted
experiments using the dataset COCOA [12], KINS [8], and
DIW [3]. To our best knowledge, COCOA and KINS are
publicly released as written in the papers [8, 12]. However,
we could not find the appropriate license for the DIW [3]

dataset.

We utilized a pre-trained model of MiDaS-v2 [9]* that fol-
lows MIT license, and PCNet-M [11]° that follows Apache

License 2.0.

3https://www.flickr.com/creativecommons/
4https://github.com/intel-isl/MiDa$S
Shttps://qithub.com/Xiaohanqzhan/deocclusion/
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