
Supplementary Material

Overview This supplementary material provides imple-
mentation details including the dataset details for learning
multi-modal representations and optimizing image manip-
ulation (Section A). We also provide an additional abla-
tion study with a different set of hyperparameters to see
their effects on the quality of image manipulation (Sec-
tion B). Next, in Section C, we provide our detailed anal-
ysis of the manipulated latent code. Lastly, in Section D,
we provide (i) details of our user study and (ii) more di-
verse qualitative results with a variety of sound sources.
We discuss about societal impact in Section E. More-
over, we also provide diverse examples in the follow-
ing anonymized project website: https://kuai-lab.
github.io/cvpr2022sound/.

A. Implementation Details

Dataset Details. For learning multi-modal representations
of audio, text, and images, we use large-scale audio and
video benchmarks [3, 1] as training datasets. As an eval-
uation dataset, the zero-shot classification accuracy is mea-
sured using the audio classification benchmark [11, 9]. For
image manipulation evaluation, we use partial datasets [3,
1] of audio and video which were not included in the train-
ing dataset.

To establish a multi-modal embedding space, we use
the audio-text pair and video datasets named The Audio
Set [3] which is consists of 632 audio event categories and
a collection of 2,084,320 human-labeled 10-seconds sound
clips from YouTube videos. Since there are some missing
associate urls on YouTube, we use 17,153 audio and text
pairs out of 20,371 pairs in balanced subsets, and 1,617,939
pairs out of 2,041,789 pairs as unbalanced subsets for train-
ing. We also utilized VGG-Sound [1] which consists of
310 event classes and a collection of over 200,000 human-
labeled 10-second video clips pulled from YouTube videos.
We use 182,342 videos for training in the dataset. For each
video clip, we capture the middle frame and use it as an
input image. Here, the corresponding text prompts are ex-
tracted from the ground truth labels.

To evaluate zero-shot transferability of the audio em-
bedding from our proposed model, we use the audio clas-
sification benchmark: (i) Environment Sound Classifica-
tion dataset (ESC-50) [9], which comprises of 2000 clips
from 50 classes. Note that each of these clips are sampled
at 44.1 kHz, with a length of 5 seconds. (ii) The Urban-
Sound8k dataset [11] contains 8732 clips from 10 classes.
Each audio is less than 4-second long and sampled at fre-
quencies of 16 to 48 kHz.

Implementation Details for StyleGAN2 Generator. We
implement StyleGAN generator [5] based on the official

Ours (w/o ℒ!"#
(%⟷ '%))

Source image “Nose blow” 
(Text based) Ours (w/ ℒ!"#

(%⟷ '%))
Nose blow Nose blow 

Figure 1: Ablation study of self-supervised representation
learning for audio inputs.

PyTorch implementation from StyleGAN2-ADA 1. We ma-
nipulate the images with the pre-trained generator with
high-resolution image datasets [6, 12, 16]. Flickr-Faces-HQ
(FFHQ) [6] contains the 70k high-quality human face im-
ages in resolution of 1024 × 1024. The Large-scale Scene
Understanding (LSUN) Challenge [16] contains the church
images in resolution of 256 × 256 and the car images in the
resolution of 384 × 512. WikiArt [12] contains the painting
images in resolution of 1024× 1024 drawn by 195 different
artists. The Landscapes High-Quality (LHQ) [13] contains
nature landscape images in resolution of 256 × 256.

B. Ablation Study

Effect of Self-supervised Contrastive Representation
Learning for Audio Inputs. We conduct an ablation study
on applying self-supervised representation learning. We al-
ready demonstrate that the self-supervised representation
learning of audio inputs improves the zero-shot audio clas-
sification performance. Furthermore, rich audio represen-
tation obtained from the self-supervised learning improves
sound-guided image manipulation quality (see Fig. 1).
These are manipulation results without L(a↔â)

nce and with
L(a↔â)
nce , respectively. In the absence of the self-supervised

learning of audio inputs, the manipulation results are simi-
lar to StyleCLIP [8] because the representation in the latent
space of audio is CLIP [10]-dependent. The self-supervised

1https://github.com/NVlabs/stylegan2-ada-pytorch
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learning of audio inputs reflects vivid emotions in image
manipulation that can be only done with audio. In addition,
Fig. 3 shows that our method produce more realistic manip-
ulation results than AudioCLIP [4].

Effect of Identity Loss. We compare the manipulation re-
sults while varying hyperparameters λsim and λID (see
Fig. 2). Changes in brightness and saturation can be con-
trolled by those hyperparameters. High values of λsim and
λID lead to maintaining the content of the source image,
while low values distort the content.

Effect of Symmetric Contrastive Loss Form. We identify
the effectiveness of the symmetric contrastive loss form.
Our model trained with the symmetric loss shows 4.05 %
higher in the ESC-50 [9] dataset and 3.1 % higher in the Ur-
banSound8k [11] dataset than those with the non-symmetric
form. These experimental results imply that loss function
with symmetric form improves the zero-shot audio classifi-
cation accuracy.

C. Manipulated Latent Code Analysis

Manipulated Latent Code Interpolation. Our model al-
lows different modalities (audio, text and image) to share
the same embedding space using our multi-modal con-
trastive loss. In order to illustrate that the source latent code
is guided in the same embedding space even if the modal-
ity is different, we interpolate text and sound-guided latent
code (see Fig. 10 and Fig. 11). The interpolated latent code
w is the weighted sum of wt, which is a text-guided latent
code, and wa, which is a sound-guided latent code. The ex-
pression w = (1−α) ·wa+α ·wt is obtained. It shows the
result of generating an image by linearly interpolating the
latent code guided by text and audio. The generated result
from the interpolated latent code contains the intermediate
meaning of the two modalities continuously.

Distribution of Manipulation Direction. We analyze the
distribution of the manipulation direction that text and
sound are intended to guide. We perform audio-driven im-
age manipulation of 150 latent codes with audio that is not
used for learning among the attributes in the category of
VGG-Sound [1]. As shown in Fig. 4, sound manipulates
images with more diverse guidance than text. When ma-
nipulating an image with six attributes with the FFHQ [6]
dataset, the sound is farther from the average of the manip-
ulation direction than text. The mean and variance for the
manipulation direction are numerically summarized in Ta-
ble 1.

We illustrate that the direction of sound-guided manipu-
lation is more diverse than that of text-based manipulation.
Our method encourages audio representations of the same-
class different views to be closer in the embedding space.

D. Qualitative and Quantitative Results

User Study Details. Detailed results of downstream tasks
are described in Table 2. We manipulate the source image
with a total of 8 attributes. In the FFHQ [6] dataset, im-
ages are manipulated by three attributes including giggling,
sobbing and nose blowing. The remaining wind noise, un-
derwater bubbling, explosion, and thunderstorm are used to
manipulate the image generated by the LSUN [16] dataset.
Our model manipulates images with the meaning of at-
tributes better than text-based manipulation methods such
as TediGAN [15] and StyleCLIP [8]. Among three models,
our model best reflects the meaning of attributes in image
manipulation.

Additionally, Amazon Mechanical Turk (AMT) partic-
ipants select the manipulation results generated by our
model match well with the ground truth. Fig. 5 also shows
the incorrect answer ratio chosen by the participants in
the user study for each question. In text-based manipula-
tion methods, most people perceive the results created with
“sob” and “scream” as “giggle”.

Additional Qualitative Examples. We show more com-
parison results in Fig. 6 and Fig. 7. The sound-guided im-
age manipulation illustrates more radical results than text-
guided image manipulation (StyleCLIP [8]).

Sound controls signal intensity by adding or subtracting
decibels. In Fig. 8, we show that the semantic reflected in
the image does not change significantly with scaled sound.
Still, the detail within the image changes. We demonstrate
more diverse examples in Fig. 9, Fig. 12 and Fig. 13. All
manipulated results in Fig. 13 are obtained from the pre-
trained StyleGAN2 [7] with the LHQ dataset [13].

E. Societal Impact
The proposed method of the sound-guided image ma-

nipulation is based on CLIP’s knowledge which may have
social prejudice. In the CLIP paper, the author says “CLIP
is trained on text paired with images on the internet. These
image-text pairs are unfiltered and uncurated, resulting in
learning online social biases.”. Therefore, there is a possi-
bility that certain social bias may appear when editing peo-
ple’s faces with sounds related to a thief, prisoner, criminal,
and suspicious people, such as guns and fighting sounds.
Also, when manipulating a human face with a sound such
as a vacuum cleaner or women speaking, manipulation re-
sults with social prejudice like housekeepers may appear in
the manipulated images.
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Figure 2: Ablation study of the hyperparameters for sound-guided image manipulation. In the direct latent code optimization
step, the row below means that λsim is low and the column to the right means that λID is high.
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Figure 3: Qualitative comparison of manipulation results between ours and AudioCLIP [4].

Table 1: Cosine similarity between text-guided and sound-guided latent code. ws is source latent code, wa is audio-driven
latent code, wt is text-driven latent code. wt is the latent code guided by StyleCLIP [8]’s text-driven latent optimization.

Attribute
Latent code Metric Giggling Sobbing Nose blowing Fire crackling Wind noise Underwater bubbling Explosion Thunderstorm Average

(ws, wa) Mean (↓). 0.99528 0.99510 0.99448 0.97907 0.97679 0.98040 0.97956 0.98479 0.98568
Std (↑). 0.00178 0.00162 0.00242 0.00786 0.00829 0.00614 0.00698 0.00512 0.00502

(ws, wt) Mean (↓). 0.99866 0.99849 0.99779 0.99002 0.99294 0.99024 0.99117 0.99136 0.99383
Std (↑). 0.00067 0.00065 0.00097 0.00379 0.00322 0.00318 0.00321 0.00340 0.00238

(wa, wt) Mean (↓). 0.99554 0.99510 0.99448 0.97511 0.97307 0.97695 0.97497 0.97843 0.98295
Std (↑). 0.00166 0.00162 0.00242 0.00972 0.00935 0.00703 0.00827 0.00713 0.00590



Table 2: More detailed downstream task evaluation to compare the quality of representations between ours and text-driven
manipulation approaches on the FFHQ [6] dataset and the LSUN [16] dataset. This table shows how much the meaning fits
the user-provided input after sampling 150 latent codes and manipulating them with TediGAN [15], StyleCLIP [8], and Ours.
Image features are extracted with an image encoder trained with multi-modal latent representation learning, and these are
classified by logistic regression, a linear classifier.

Attribute (↑)
Model Giggling Sobbing Nose blowing Fire crackling Wind noise Underwater bubbling Explosion Thunderstorm Average

TediGAN [15] 0.967 0.940 0.947 0.686 0.940 0.727 0.858 0.720 0.848
StyleCLIP [8] 0.933 0.913 0.866 0.846 0.953 0.933 0.987 0.987 0.927
Ours 0.987 0.993 0.966 0.953 0.993 0.987 0.993 0.993 0.983

(a) Screaming (b) Sobbing (c) Nose blowing

(d) Giggling (e) Coughing (f) Baby crying  

AudioText

Figure 4: Visualization of audio and text-guided manipulation directions with t-SNE [14] (red: text, blue: audio).
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Figure 5: Further user study to demonstrate whether the image manipulated by each model matches the ground truth. These
results are reported in the percentage.
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Figure 6: Comparison of the text-driven manipulation and audio-driven manipulation results from the LSUN dataset [16].
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Figure 7: Comparison of the text-driven manipulation and audio-driven manipulation results from the FFHQ dataset [6].
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Figure 8: Ablation study according to the volume of sound. A change in the size of the volume affects the detailed style, but
the overall meaning does not change.
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Figure 9: Additional results of sound-guided image manipulation from the AFHQv2 dataset [2]. The first row is the input
image, the second row is the manipulation results.
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Figure 10: The manipulation results of interpolation between text and audio-guided latent codes. Even if the source latent
code is guided by different modality, optimization occurs in the same latent space of StyleGAN, which is pre-trained with
the FFHQ [6] dataset.
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Figure 11: The manipulation results of interpolation between text and audio-guided latent codes. Even if the source latent
code is guided by different modality, optimization occurs in the same latent space of StyleGAN, which is pre-trained with
the LSUN [16] dataset.
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Figure 12: Additional results of sound-guided artistic paintings manipulation from the Wikiart dataset [12].



Source Image Manipulated Image Source Image Manipulated Image

Thunder Explosion

Explosion Ocean

Thunder Wind

Wind Explosion

Thunder Rain

Water Rain

Figure 13: Additional results of sound-guided image manipulation from the LHQ dataset [13].
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