
A. Implementation Details

For the evolutionary algorithm, the population is initial-

ized with K = 20 randomly generated loss functions, and is

restricted to most recent P = 2500 loss functions. The ra-

tio of tournament selection [20] is set as T = 5% of current

population. During random initialization and mutations, the

sampling probabilities for all the operators in the primitive

operator set H are the same. The initial depth of computa-

tional graphs is D = 3. For the loss-rejection protocol and

the gradient-equivalence-check strategy, B = 5 samples are

randomly selected from the training set Strain.

In the proposed loss-rejection protocol, the threshold for

unpromising loss function is set as η = 0.6. We use stochas-

tic gradient descent with momentum to optimize Eq. (3) for

500 iterations. The learning rate for the loss-rejection proto-

col is 0.001. The momentum factor is set as 0.9. There is no

weight decay. Since the predictions of different samples and

spatial positions are optimized independently in Eq. (3), we

do not normalize along any dimensions when aggregating

the output tensor to the final loss value in the loss-rejection

protocol.

We stop the search when the total number of proxy task

evaluations reaches 500. The best loss function is then used

for re-training experiments. All the experiments are con-

ducted on 4 NVIDIA V100 GPUs.

A.1. Semantic Segmentation

Datasets. PASCAL VOC 2012 [17] with extra annota-

tions [21] is utilized for our experiments. During search, we

randomly sample 1500 training images in PASCAL VOC to

form the evaluation set Seval, and use the remaining train-

ing images as the training set Strain. The target evaluation

metrics include Mean IoU (mIoU), Frequency Weighted

IoU (FWIoU), Global Accuracy (gAcc), Mean Accuracy

(mAcc), Boundary IoU (BIoU) [28] and Boundary F1 Score

(BF1) [14]. The first four metrics measure the overall seg-

mentation accuracy, and the other two metrics evaluate the

boundary accuracy.

Implementation Details. During search, we use

DeepLabv3+ [8] with ResNet-50 [24] as the network. The

softmax probabilities y and the one-hot ground-truth labels

ŷ are used as the inputs of loss functions, both of which

are of shape (N,C,H,W). For the boundary metrics, we

use the pre-computed boundaries of y as the training tar-

gets. Following [31], we simplify the proxy task by down-

sampling the input images to the resolution of 128 × 128,

and reducing the training schedule to 3 epochs (1/10 of the

normal training schedule) with a mini-batch size of 32. We

use stochastic gradient decent with momentum to train the

network. The initial learning rate is 0.02, which is decayed

by polynomial with power 0.9 and minimum learning rate

10−4. The momentum and weight decay factors are set to

0.9 and 5× 10−4, respectively. For faster convergence, the

learning rate of the segmentation head is multiplied by 10.

After the search procedure, we re-train the segmentation

networks with ResNet-101 as the backbone for 30 epochs.

The input image resolution is 512×512. The re-training set-

ting is the same as [8], except that the searched loss function

is utilized.

A.2. Object Detection

Datasets. We conduct experiments on large-scale object

detection dataset COCO [34]. In the search experiments,

we randomly sample 5000 images from the training set for

validation purpose, and sample 1/4 of the remaining images

for network training. The target evaluation metric is Mean

Average Precision (mAP).

Implementation Details. We use Faster R-CNN [51] with

ResNet-50 [24] and FPN [32] as the detection network.

There are 4 loss branches, i.e., the classification and re-

gression branches for the RPN [51] sub-network and Fast

R-CNN [19] sub-network. We search for loss functions of

the 4 branches simultaneously from scratch. The inputs of

loss functions for the classification branches are the softmax

probabilities and the one-hot ground-truth labels. Follow-

ing [37], we use the intersection, union and enclosing areas

between the predicted and ground-truth boxes as the regres-

sion loss inputs. The loss weights are set to 1.0 for classi-

fication branches and 10.0 for regression branches, which

follows [52].

During search, the initialization / mutation process is re-

peated for each loss branch separately until it passes the

loss-rejection protocol. In the loss-rejection process of each

loss branch, the predictions of the other branches are set as

the ground-truth targets. For the RPN sub-network, the cor-

relation score g(L; ξ) is calculated with the predicted region

proposals and the corresponding training targets.

We train the network with 1/4 of the COCO data for 1
epoch as the proxy task. We further simplify the network

by only using the last three feature levels of FPN, and re-

ducing the channels of the detection head by half. The

learning rate is set to 0.04 with a batch size of 32, and a

linear learning rate warm-up of 250 iterations is applied.

After the search procedure, we re-train the detection net-

work with the searched loss functions for 12 epochs. The

re-training hyper-parameters are the same as the default set-

tings of MMDetection [6].

A.3. Instance Segmentation

Datasets. We conduct experiments on COCO [34]. In the

search experiments, we randomly sample 5000 images from

the training set for validation purpose, and sample 1/4 of

the remaining images for network training. The target met-

ric is mAP with IoU defined on masks.

Task Metric Formula

Seg

mIoU − 1
2
log
(

tanh
(

y

1+y

√
ŷ
)

(ŷ2 + y)
)

FWIoU log(y log (y + (y + ŷ)/ŷ))

gAcc exp
(

(

y −√
ŷ
)2
)

mAcc tanh

(

√

Meannhw

(

− log(ŷ)
√

Max-Pooling
(√

2y
)

)

)

BIoU − log
(

ŷ3y
√

−Min-Pooling (−ŷ) exp
(

(ŷ exp(ŷ))2
)

)

BF1 exp (Meannhw (−Max-Pooling(y) log (Max-Pooling(ŷ))) + tanh (Meannhw (2ŷ + 1)))

Det mAP

ClsRPN exp(tanh(y))/ŷ

RegRPN e/(i+ u)

ClsRCNN −y log(ŷ)

RegRCNN − log(i/e)

Ins mAP

ClsRPN −yŷ/ tanh(ŷ)

RegRPN e/(i+ u)

ClsRCNN −y log(ŷ)

RegRCNN −
√
i/
√
e

Mask | log(yŷ)|
Pose mAP (ŷ − 16y4)2 + ŷ4

Table 9. Discovered Loss Functions. “Seg”, “Det”, “Ins”, and “Pose” denotes the tasks of semantic segmentation, object detection,

instance segmentation, and pose estimation, respectively. Max-Pooling and Min-Pooling have kernel size 3×3. A small positive number

ϵ = 10−12 is added in log(·),√·, and the denominators of division operations to avoid infinite values or gradients. ŷ and y denote

the network prediction and the training target of the corresponding branch. i, u, and e in the box regression loss branches refer to the

intersection, union, and enclosed areas between the predicted and the target bounding boxes, respectively, which follows [37].

Implementation Details. Mask R-CNN [23] with ResNet-

50 [24] and FPN [32] is used as the network. We conduct

the search for all the 5 loss branches simultaneously. The

inputs of loss functions for the classification and regression

branches are the same as in object detection. The predic-

tion used as loss inputs for each RoI of the mask branch is

the per-pixel softmax probabilities indicating foreground or

background.

The proxy task is the same as for object detection. After

the search procedure, we re-train the detection network with

the searched loss functions for 12 epochs. We use the de-

fault hyper-parameters of MMDetection [6] for re-training

the networks with our searched loss functions.

A.4. Pose Estimation

Datasets. Experiments are conducted on COCO [34],

which contains 250,000 person instances labeled with 17

keypoints each. During search, we randomly select 5000
image from the training set for proxy task evaluation. The

target evaluation metric is keypoint mAP [62], which is very

similar to the mAP in object detection, where object key-

point similarity (OKS) is used to substitute the bounding

box IoU.

Implementation Details. We use [62] with Resnet-50 [24]

as the network. Following the practice in [12], person de-

tection results provided by [62] are utilized. For each joint

of each detected box in the person detection results, the net-

work predicts a 64 × 48 heatmap, and the target heatmap

is constructed as in [62]. Loss function is applied only on

visible joints.

During search, we train the network using the Adam [27]

optimizer for 4 epochs as the proxy task. The learning rate

is 2.5× 10−4 with a cosine annealing schedule and a linear

warm-up for 250 iterations. The batch size is set as 256.

After the search procedure, we re-train the network with

the searched loss functions for 210 epochs using the default

training settings of MMPose [12].

B. Formulas of the Discovered Loss Functions

Table 9 shows the formulas of the discovered loss func-

tions. The formulas are simplified manually by removing

useless operators (e.g. squaring the constant one or taking

the absolute value of a non-negative quantity).

C. Search Efficiency

We ablate the search efficiency of AutoLoss-Zero on se-

mantic segmentation with the mIoU metric and object de-

tection with the mAP metric. Starting from random search,

we add each component of AutoLoss-Zero sequentially to

verify its effectiveness. Figure 4 shows the results. The pro-

posed loss-rejection protocol greatly improves the search

efficiency for both tasks, and the gradient-equivalence-

check strategy is also helpful. For semantic segmentation

which only contains a single loss branch, naı̈ve evolution

can also discover the proper losses despite its inefficiency.

For object detection with 4 loss branches, the exponentially

increased sparsity of the search space brings great difficulty

to the search. Therefore, without the loss-rejection protocol,

no loss functions with scores greater than zero can be dis-

covered within a reasonable time. Table 8 further presents

the number of loss functions that can be explored in 48

hours by AutoLoss-Zero. Over 106 loss functions can be ex-

plored, which ensures that AutoLoss-Zero can explore the

huge and sparse search space within a reasonable time.

D. Licences of Assets

D.1. Datasets

Pascal VOC [17] uses images from Flickr, which is sub-

ject to the Flickr terms of use [18].

Cityscapes [13] is licenced under the Terms of Use of

Cityscapes [9].

COCO [34]. The annotations are under the Creative

Commons Attribution 4.0 License [10]. The images are

subject to the Flickr terms of use [18].

D.2. Code

MMSegmentation [11], MMDetection [6], MM-

Pose [12] are licenced under the Apache License 2.0, and

the copyright holder is Open-MMLab.

