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The supplementary material is composed of the following parts: a) more evaluation metrics of depth reconstruction, b)
generalization ability on other depth datasets. Since we currently working on the following up research works based upon
the proposed method in this paper, we promise to open source the code soon.

More evaluation metrics of depth reconstruction. Here, we show comparisons in other metrics for depth performance
evaluation [2]. These metrics are defined as:
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Tab. 1 lists the average performance metrics of the three noise levels on the NYU-V2 test dataset. As shown, the proposed
method elegantly outperforms the existing iToF imaging methods, coding functions, and reconstruction methods, in these
metrics.

(a) Overall Performance RMSE (mm) ↓ Abs. Rel ↓ Sq. Rel ↓ δ ↑
Sinusoid + PS [4] 385.652 0.170 31.975 0.188
Square + PS [4] 267.312 0.109 15.228 0.286

Hamilton [3] 320.479 0.095 20.977 0.421
DeepToF [8] 92.765 0.053 2.482 0.527

(b) Coding Function RMSE (mm) ↓ Abs. Rel ↓ Sq. Rel ↓ δ ↑
Sinusoid 66.641 0.041 1.437 0.640

Dual-freq Sinusoid 49.330 0.018 0.790 0.920
Square 56.717 0.038 0.989 0.646

Hamiltonian [3] 30.466 0.016 0.235 0.926
(c) Recovery Method RMSE (mm) ↓ Abs. Rel ↓ Sq. Rel ↓ δ ↑

DeepToF [8] 73.334 0.153 1.607 0.703
MaskToF [1] 40.468 0.019 0.350 0.893
Our method 23.513 0.011 0.129 0.972

Table 1. Comparison in other metrics of the overall performance, coding functions, and reconstruction methods. Note that ↓ denotes that
the smaller value the better performance, and ↑ denotes that the bigger value the better performance.

Generalization ability on other datasets. To demonstrate the generalization ability of the proposed iToF imaging method,
we perform a cross-dataset evaluation by training our network on the NYU-V2 dataset [6] and evaluating it on the other depth
datasets, i.e. SUN RGB-D dataset [7] and 4D Light Field dataset [5] without any finetuning. We select 14 scenes of the 4D
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Light Field Dataset and 200 scenes of the SUN RGB-D dataset as the test datasets. As shown in Tab. 2, our method shows
good generalization capability on the two datasets and still achieves the best depth reconstruction fidelity. The qualitative
depth reconstruction results are shown in Figs. 1-6. Compared with the other methods, our method can reconstruct the depth
details of the scenes and maintain a high depth accuracy even at high noise levels on the two test datasets.

(a) SUN RGB-D MAE (mm)/RMSE (mm)
Sinusoid + PS [4] 198.30/330.28 264.28/417.36 335.20/502.36
Square + PS [4] 123.86/212.12 173.63/293.48 232.11/376.42

Hamilton [3] 111.95/269.03 167.77/357.11 230.85/438.57
DeepToF [8] 47.10/78.70 65.51/98.10 103.40/141.56

Ours 14.11/27.36 15.09/28.44 20.39/34.55
(b) 4D Light Field MAE (mm)/RMSE (mm)
Sinusoid + PS [4] 251.41/422.65 320.19/505.67 389.86/581.65
Square + PS [4] 161.45/287.52 221.26/380.14 284.72/463.68

Hamilton [3] 161.30/364.15 225.74/453.58 290.72/528.47
DeepToF [8] 50.27/85.42 68.94/102.45 100.94/133.56

Ours 16.84/37.20 17.03/36.91 21.66/41.06

Table 2. Depth reconstruction performance of different iToF methods on other two datasets [5, 7] with respect to three different noise
settings from the 2nd to 4th column.
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Figure 1. Depth reconstruction results on 4D Light Field Dataset [5] under small noise level, i.e. (E, β) = (20000, 6000).

Scene GT DeepToF OursHamiltonSquare + PSSinusoid + PS

Figure 2. Depth reconstruction results on 4D Light Field Dataset [5] under middle noise level, i.e. (E, β) = (14000, 6000).
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Figure 3. Depth reconstruction results on 4D Light Field Dataset [5] under large noise level, i.e. (E, β) = (10000, 6000).
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Figure 4. Depth reconstruction results on SUN RGB-D dataset [7] under small noise level, i.e. (E, β) = (20000, 6000).
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Figure 5. Depth reconstruction results on SUN RGB-D dataset [7] under middle noise level, i.e. (E, β) = (14000, 6000).
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Figure 6. Depth reconstruction results on SUN RGB-D dataset [7] under large noise level, i.e. (E, β) = (10000, 6000).


