MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation
—Supplemental Material-

Wenhao Li!

Hong Liu"* Hao Tang?

Pichao Wang®  Luc Van Gool?

'Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University

2Computer Vision Lab, ETH Zurich

3 Alibaba Group

{wenhaoli, hongliu}@pku.edu.cn

{hao.tang, vangool}@vision.ee.ethz.ch

This supplementary material contains the following de-
tails: (1) A brief description of multi-head cross-attention.
(2) Additional quantitative results. (3) Additional ablation
studies. (4) Additional visualization results.

1. Multi-Head Cross-Attention

In Sec. 3.1 of our main manuscript, we give a brief
description of the multi-head self-attention (MSA) block.
Given the inputs z€R"*?, they are first inearly mapped
to queries QGR”Xd, keys KeR™* 4 and values VeR™*4,
Then, the scaled dot-product attention can be computed by:

. QKT
Attention(Q, K, V) = Softmax ( > V. )
Vd

In this section, we further define the multi-head cross-
attention (MCA) among three tensors, x, y, and z. The inputs
reR™¥4, ycR™*4 and z€R"*¢ are linearly mapped to
queries Q,€R™ 9, keys K,€R"*4, and values V,€R"*4,
respectively. The scaled dot-product attention in the MCA
can be computed by:

Attenti (Qu, Ky, V) = Soft Q:K, 1%
entioncress (&, , V) = dottmax o
Y \/&
(2)

The common configuration of MCA uses the same input
between keys and values [2,9, 15], i.e., the inputs « # y = z.
Instead, we adopt a more efficient strategy by using different
inputs, i.e., the inputs x # y # z.

2. Additional Quantitative Results

Table 1 shows the results of our proposed MHFormer
on Human3.6M under Protocol 2. The input 2D poses
are estimated by CPN [4]. Without bells and whistles, our
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MHFormer achieves promising results that outperform the
state-of-the-art approaches.

Several methods [ 1, 13, 18] adopt a pose refinement mod-
ule, which is first proposed by ST-GCN [1], to further im-
prove the estimation accuracy. Following [1], we adopt the
refine module and the results are shown in Table 2. It can be
seen that our method can use the refine module to improve
the performance, achieving an error of 42.4 mm in MPJPE
which surpasses all other approaches by a large margin.

3. Additional Ablation Studies

Effect of Model Components. Here, we give more details
about how to build the different variants of MHFormer in
Table 7 of our main manuscript:

* Baseline: The baseline model contains 3 layers for
standard Transformer encoder (same architecture as
ViT [5]).

* SHR-CHI: We remove the MHG module. SHR-CHI
contains Lo=2 SHR and L3=1 CHI layers.

* MHG-SHR: We replace the CHI layers in MHFormer
with SHR layers. MHG-SHR contains L1 =4 MHG and
L3=3 SHR layers.

* MHG-CHI: We replace the SHR layers in MHFormer
with CHI layers. SHR-CHI contains L;=4 MHG and
Ls=3 CHI layers.

e MHFormer *: The MHG in MHFormer is simply built
upon several parallel Transformer encoders.

e MHFormer: Our proposed method that contains Ly =4
MHG, Ly=2 SHR, and L3=1 CHI layers. Please refer
to Figure 3 in our main manuscript.

Impact of Configurations in MH-CA. As mentioned in
Sec. 3.5 of our main manuscript, the common configura-
tion of MCA uses the same input between keys and val-
ues [2,9, 15], which will result in more blocks. We adopt a
more efficient configuration by using different inputs among
queries, keys, and values. The performance and computa-
tional complexity of these two configurations are given in



Table 1. Quantitative comparison with the state-of-the-art methods on Human3.6M under Protocol 2. (}) - uses temporal information. Blod:
best; Underlined: second best.

Method ‘ Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. ‘ Avg.
SimpleBaseline (ICCV’17 [10] | 39.5 432 464 470 510 560 414 406 565 694 492 450 495 380 431 | 477
Fang er al. (AAAI’18 [6] 382 417 437 449 485 553 402 382 545 644 472 443 473 367  4LT | 457
PoseAug (CVPR’21) [7] - - - - - - - - - - - - - - - 39.1
SGNN (ICCV’21) [16] 339 372 368 381 387 435 378 350 472 538 407 383 418 301 314 | 390
ST-GCN (ICCV’19) [1] (1) 357 378 369 407 396 452 374 345 469 501 405 361 410 296 332 | 390
VPose eral. (CVPR'19) [12] (1) | 34.1 361 344 372 364 422 344 336 450 525 374 338 378 256 273 | 365
Xu et al. (CVPR’20) [14] (1) 310 348 347 344 362 439 316 335 423 490 371 330 3901 269 319 | 362
Liu ez al. (CVPR20) [8] (1) 323 352 333 358 359 415 332 327 446 509 370 324 370 252 272 | 356
UGCN (ECCV’20) [13] (1) 329 352 356 344 364 427 312 325 456 502 373 328 363 260 239 | 355
Anatomy3D (TCSVT'21) [3] (1) | 326 351 328 354 363 404 324 323 427 490 368 324 360 249 265 | 350
PoseFormer (ICCV'21) [17] (1) | 325 348 326 346 353 395 321 320 428 485 348 324 353 245 260 | 346
MHFormer (Ours) (1) 315 349 328 336 353 396 320 322 435 487 364 326 343 239 251 | 344
Table 2. Quantitative comparison on Human3.6M under MPJPE.
Blod: best; Underlined: second best. 501 —o— CPN
=t te —*— GT
Method Refine module MPIJPE (mm)
MGCN (ICCV’21) [18] v 49.4 45
ST-GCN (ICCV’19) [1] v 48.8 E
UGCN (ECCV20) [13] 45.6 g
UGCN (ECCV’20) [13] v 445 & 40+
o
MHFormer (Ours) 43.0 =
MHFormer (Ours) v 424 35
Table 3. Ablation study on different configurations of MH-CA on
Human3.6M under MPJPE. Here, * means using the same input 301 : , : :
between keys and values in MH-CA. 19 27 81 135 243 351
Receptive fields
Method Params (M) FLOPs (G) MPJPE (mm) (a) Different receptive fields under MPJPE.
MH-CA * 22.07 1.21 46.1
MH-CA 18.92 1.03 45.9 55 4
SH
e O
Table 3. We can see that using the same input between keys 50 Detectron
and values in MH-CA (MH-CA *) requires more parameters < GT+M0,20)
. . £ N
.and FLOPs but canpot bring further p.erformance gains. It = 45 oo SN0 15)
illustrates the effectiveness of our efficient strategy in MCA. = GTANO.10)
. . . s +N(O,
Impact of Receptive Fields. For the video-based 3D human 40
pose estimation task, the number of receptive fields directly GT+A0, 5)
influences the estimation results. Figure 1 (a) shows the
results of our model with different receptive fields (between 351

1 and 351) on Human3.6M. Increasing the receptive field can
improve the result under both CPN and GT 2D pose inputs,
which demonstrates the great power of our method in long-
range dependency modeling with a long input sequence.
Impact of 2D Detections. To show the effectiveness of our
method on different 2D pose detectors, we carry out experi-
ments with the detections from Stack Hourglass (SH) [11],
Detectron [12], and CPN [4]. In addition, to evaluate the
robustness of our method to various levels of noise, we also
conduct experiments on 2D ground truth plus different levels
of additive Gaussian noise. The results are shown in Figure 1
(b). It can be observed that the curve has a nearly linear
relationship between MPJPE of 3D poses and two-norm
errors of 2D poses. These experiments validate both the
effectiveness and robustness of our proposed method.

10 15 20 25

Two-norm errors of 2D Estimator
(b) Different 2D detections under MPJPE.
Figure 1. (a) Ablation studies on different receptive fields of our
method on Human3.6M under MPJPE metric. (b) The effect of
2D detections on Human3.6M under MPJPE. Here, (0, o2) rep-
resents the Gaussian noise with mean zero and o is the standard
deviation. (CPN) - Cascaded Pyramid Network; (SH) Stack Hour-
glass; (GT) - 2D ground truth.

4. Additional Visualization Results

3D Reconstruction Visualization. Figure 2 and Figure 3
show qualitative results of our method on Human3.6M
dataset, MPI-INF-3DHP dataset, and challenging in-the-wild
videos. Moreover, Figure 4 shows the qualitative comparison



with the baseline method and the previous state-of-the-art
method (PoseFormer [17]) on some wild videos. It can be
seen that our method can produce more accurate and reason-
able 3D poses, especially when the human action is complex
and rare.

Hypothesis Visualization. For visualization purposes, we
add additional regression layers and finetune our model to
output intermediate hypotheses. Figure 5 shows the visual-
ization results of intermediate 3D pose hypotheses generated
by our proposed method. We can see that our MHFormer can
generate different plausible 3D pose solutions, especially for
ambiguous body parts with depth ambiguity, self-occlusion,
and 2D detector uncertainty.

Attention Visualization. Visualization results of the multi-
head attention maps of the first layers from the Multi-
Hypothesis Generation (MHG) module and Self-Hypothesis
Refinement (SHR) module (351-frame model with 3 hy-
potheses) are shown in Figure 6 and Figure 7, respectively.
It can be found that the maps of multiple hypotheses con-
tain diverse patterns and semantics. This indicates multiple
representations in our method actually learn various modal
information of pose hypotheses.
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Figure 2. Qualitative results of our proposed method on Human3.6M dataset (first 1 row) and MPI-INF-3DHP dataset (last 2 rows).
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"Figure 3. Quali;ative results of éur proposed me&lod on challengi}lg in-the-wild v{deos.
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Figure 4. Qualitative co}nparison amongithe proposed method (MHFormer), the baseline method, and the previous state-of-the-art method
(PoseFormer) [17] on challenging wild videos. Wrong estimations are highlighted by yellow arrows.
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Figure 5. Diverse 3D pose hypotheses generated by MHFormer. For easy illustration, we color-code the hypotheses to show the difference

among them, and the hypotheses are shown from two perspectives. Green colored 3D pose corresponds to the final synthesized estimation of
our method.
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Figure 6. Multi-head attention maps (9 heads) from the Multi-Hypothesis Generation (MHG) module of our 351-frame model with 3
different hypotheses. The brighter color indicates a stronger attention value.
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Figure 7. Multi-head attention maps (8 heads) from the Self-Hypothesis Refinement (SHR) module of our 351-frame model with 3 different
hypotheses. The brighter color indicates a stronger attention value.



