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This supplementary material contains the following de-
tails: (1) A brief description of multi-head cross-attention.
(2) Additional quantitative results. (3) Additional ablation
studies. (4) Additional visualization results.

1. Multi-Head Cross-Attention
In Sec. 3.1 of our main manuscript, we give a brief

description of the multi-head self-attention (MSA) block.
Given the inputs x∈Rn×d, they are first inearly mapped
to queries Q∈Rn×d, keys K∈Rn×d, and values V ∈Rn×d.
Then, the scaled dot-product attention can be computed by:

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V. (1)

In this section, we further define the multi-head cross-
attention (MCA) among three tensors, x, y, and z. The inputs
x∈Rn×d, y∈Rn×d, and z∈Rn×d are linearly mapped to
queries Qx∈Rn×d, keys Ky∈Rn×d, and values Vz∈Rn×d,
respectively. The scaled dot-product attention in the MCA
can be computed by:

Attentioncross(Qx,Ky, Vz) = Softmax

(
QxK

T
y√

d

)
Vz.

(2)
The common configuration of MCA uses the same input
between keys and values [2,9,15], i.e., the inputs x 6= y = z.
Instead, we adopt a more efficient strategy by using different
inputs, i.e., the inputs x 6= y 6= z.

2. Additional Quantitative Results
Table 1 shows the results of our proposed MHFormer

on Human3.6M under Protocol 2. The input 2D poses
are estimated by CPN [4]. Without bells and whistles, our
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MHFormer achieves promising results that outperform the
state-of-the-art approaches.

Several methods [1, 13, 18] adopt a pose refinement mod-
ule, which is first proposed by ST-GCN [1], to further im-
prove the estimation accuracy. Following [1], we adopt the
refine module and the results are shown in Table 2. It can be
seen that our method can use the refine module to improve
the performance, achieving an error of 42.4 mm in MPJPE
which surpasses all other approaches by a large margin.

3. Additional Ablation Studies

Effect of Model Components. Here, we give more details
about how to build the different variants of MHFormer in
Table 7 of our main manuscript:

• Baseline: The baseline model contains 3 layers for
standard Transformer encoder (same architecture as
ViT [5]).

• SHR-CHI: We remove the MHG module. SHR-CHI
contains L2=2 SHR and L3=1 CHI layers.

• MHG-SHR: We replace the CHI layers in MHFormer
with SHR layers. MHG-SHR contains L1=4 MHG and
L3=3 SHR layers.

• MHG-CHI: We replace the SHR layers in MHFormer
with CHI layers. SHR-CHI contains L1=4 MHG and
L3=3 CHI layers.

• MHFormer ∗: The MHG in MHFormer is simply built
upon several parallel Transformer encoders.

• MHFormer: Our proposed method that contains L1=4
MHG, L2=2 SHR, and L3=1 CHI layers. Please refer
to Figure 3 in our main manuscript.

Impact of Configurations in MH-CA. As mentioned in
Sec. 3.5 of our main manuscript, the common configura-
tion of MCA uses the same input between keys and val-
ues [2, 9, 15], which will result in more blocks. We adopt a
more efficient configuration by using different inputs among
queries, keys, and values. The performance and computa-
tional complexity of these two configurations are given in
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Table 1. Quantitative comparison with the state-of-the-art methods on Human3.6M under Protocol 2. (†) - uses temporal information. Blod:
best; Underlined: second best.

Method Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

SimpleBaseline (ICCV’17 [10] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Fang et al. (AAAI’18 [6] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
PoseAug (CVPR’21) [7] - - - - - - - - - - - - - - - 39.1
SGNN (ICCV’21) [16] 33.9 37.2 36.8 38.1 38.7 43.5 37.8 35.0 47.2 53.8 40.7 38.3 41.8 30.1 31.4 39.0
ST-GCN (ICCV’19) [1] (†) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
VPose et al. (CVPR’19) [12] (†) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Xu et al. (CVPR’20) [14] (†) 31.0 34.8 34.7 34.4 36.2 43.9 31.6 33.5 42.3 49.0 37.1 33.0 39.1 26.9 31.9 36.2
Liu et al. (CVPR’20) [8] (†) 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6
UGCN (ECCV’20) [13] (†) 32.9 35.2 35.6 34.4 36.4 42.7 31.2 32.5 45.6 50.2 37.3 32.8 36.3 26.0 23.9 35.5
Anatomy3D (TCSVT’21) [3] (†) 32.6 35.1 32.8 35.4 36.3 40.4 32.4 32.3 42.7 49.0 36.8 32.4 36.0 24.9 26.5 35.0
PoseFormer (ICCV’21) [17] (†) 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6

MHFormer (Ours) (†) 31.5 34.9 32.8 33.6 35.3 39.6 32.0 32.2 43.5 48.7 36.4 32.6 34.3 23.9 25.1 34.4

Table 2. Quantitative comparison on Human3.6M under MPJPE.
Blod: best; Underlined: second best.

Method Refine module MPJPE (mm)

MGCN (ICCV’21) [18] 3 49.4
ST-GCN (ICCV’19) [1] 3 48.8
UGCN (ECCV’20) [13] 45.6
UGCN (ECCV’20) [13] 3 44.5

MHFormer (Ours) 43.0
MHFormer (Ours) 3 42.4

Table 3. Ablation study on different configurations of MH-CA on
Human3.6M under MPJPE. Here, ∗ means using the same input
between keys and values in MH-CA.

Method Params (M) FLOPs (G) MPJPE (mm)

MH-CA ∗ 22.07 1.21 46.1
MH-CA 18.92 1.03 45.9

Table 3. We can see that using the same input between keys
and values in MH-CA (MH-CA ∗) requires more parameters
and FLOPs but cannot bring further performance gains. It
illustrates the effectiveness of our efficient strategy in MCA.
Impact of Receptive Fields. For the video-based 3D human
pose estimation task, the number of receptive fields directly
influences the estimation results. Figure 1 (a) shows the
results of our model with different receptive fields (between
1 and 351) on Human3.6M. Increasing the receptive field can
improve the result under both CPN and GT 2D pose inputs,
which demonstrates the great power of our method in long-
range dependency modeling with a long input sequence.
Impact of 2D Detections. To show the effectiveness of our
method on different 2D pose detectors, we carry out experi-
ments with the detections from Stack Hourglass (SH) [11],
Detectron [12], and CPN [4]. In addition, to evaluate the
robustness of our method to various levels of noise, we also
conduct experiments on 2D ground truth plus different levels
of additive Gaussian noise. The results are shown in Figure 1
(b). It can be observed that the curve has a nearly linear
relationship between MPJPE of 3D poses and two-norm
errors of 2D poses. These experiments validate both the
effectiveness and robustness of our proposed method.
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(a) Different receptive fields under MPJPE.
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(b) Different 2D detections under MPJPE.

Figure 1. (a) Ablation studies on different receptive fields of our
method on Human3.6M under MPJPE metric. (b) The effect of
2D detections on Human3.6M under MPJPE. Here, N (0, σ2) rep-
resents the Gaussian noise with mean zero and σ is the standard
deviation. (CPN) - Cascaded Pyramid Network; (SH) Stack Hour-
glass; (GT) - 2D ground truth.

4. Additional Visualization Results

3D Reconstruction Visualization. Figure 2 and Figure 3
show qualitative results of our method on Human3.6M
dataset, MPI-INF-3DHP dataset, and challenging in-the-wild
videos. Moreover, Figure 4 shows the qualitative comparison



with the baseline method and the previous state-of-the-art
method (PoseFormer [17]) on some wild videos. It can be
seen that our method can produce more accurate and reason-
able 3D poses, especially when the human action is complex
and rare.
Hypothesis Visualization. For visualization purposes, we
add additional regression layers and finetune our model to
output intermediate hypotheses. Figure 5 shows the visual-
ization results of intermediate 3D pose hypotheses generated
by our proposed method. We can see that our MHFormer can
generate different plausible 3D pose solutions, especially for
ambiguous body parts with depth ambiguity, self-occlusion,
and 2D detector uncertainty.
Attention Visualization. Visualization results of the multi-
head attention maps of the first layers from the Multi-
Hypothesis Generation (MHG) module and Self-Hypothesis
Refinement (SHR) module (351-frame model with 3 hy-
potheses) are shown in Figure 6 and Figure 7, respectively.
It can be found that the maps of multiple hypotheses con-
tain diverse patterns and semantics. This indicates multiple
representations in our method actually learn various modal
information of pose hypotheses.
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Figure 2. Qualitative results of our proposed method on Human3.6M dataset (first 1 row) and MPI-INF-3DHP dataset (last 2 rows).
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Figure 3. Qualitative results of our proposed method on challenging in-the-wild videos.
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Figure 4. Qualitative comparison among the proposed method (MHFormer), the baseline method, and the previous state-of-the-art method
(PoseFormer) [17] on challenging wild videos. Wrong estimations are highlighted by yellow arrows.



Figure 5. Diverse 3D pose hypotheses generated by MHFormer. For easy illustration, we color-code the hypotheses to show the difference
among them, and the hypotheses are shown from two perspectives. Green colored 3D pose corresponds to the final synthesized estimation of
our method.



(a) Hypothesis 1 (b) Hypothesis 2 (c) Hypothesis 3

Figure 6. Multi-head attention maps (9 heads) from the Multi-Hypothesis Generation (MHG) module of our 351-frame model with 3
different hypotheses. The brighter color indicates a stronger attention value.

(a) Hypothesis 1 (b) Hypothesis 2

(c) Hypothesis 3

Figure 7. Multi-head attention maps (8 heads) from the Self-Hypothesis Refinement (SHR) module of our 351-frame model with 3 different
hypotheses. The brighter color indicates a stronger attention value.


