
Appendix
This appendix provides further details for the main paper:
§A contains further results for COCO object detection

(§A.1) AVA action detection (§A.2) and ImageNet classifica-
tion (§A.3), as well as ablations for ImageNet classification
and COCO object detection (§A.4) and Kinetics action clas-
sification (§A.5).

§B contains additional MViTv2 upgrade details (§B.1),
and additional implementation details for: ImageNet clas-
sification (§B.2), COCO object detection (§B.3), Kinetics
action classification (§B.4), SSv2 action classification (§B.5),
and AVA action detection (§B.6).

A. Additional Results
A.1. Results: COCO Object Detection

System-level comparsion on COCO. Table A.1 shows the
system-level comparisons on COCO data. We compare our
results with previous state-of-the-art models. We adopt Soft-
NMS [4] during inference, following [55]. MViTv2-L∗

achieves 58.7 APbox with multi-scale testing, which is al-
ready +0.7 AP better than the best results of Swin-L∗ that
relies on the improved HTC++ detector [55].

model framework APbox APmask Flops Param
Copy-Paste [26] Cascade, NAS-FPN 55.9 47.2 1440 185
Swin-L [55] HTC++ 57.1 49.5 1470 284
Swin-L [55]∗ HTC++ 58.0 50.4 - 284
MViTv2-L Cascade 56.9 48.6 1519 270
MViTv2-L∗ Cascade 58.7 50.5 - 270

Table A.1. System-level comparison on COCO object detection
and segmentation. The detection frameworks include Cascade
Mask R-CNN [6] (Cascade), the improved Hybrid Task Cascade
(HTC++) [55] and Cascade Mask R-CNN with NAS-FPN [27].
∗ indicates multi-scale testing. FLOPs and Params are in Giga
(109) and Mega (106).

A.2. Results: AVA Action Detection

Results on AVA. Table A.2 shows the results of our MViTv2
models compared with prior state-of-the-art works on the
AVA dataset [32] which is a dataset for spatiotemporal-
localization of human actions.

We observe that MViT consistently achieves better re-
sults compared to MViTv1 [21] counterparts. For example,
MViTv2-S 16×4 (26.8 mAP) improves +2.3 over MViTv1-
B 16×4 (24.5 mAP) with fewer flops and parameters (both
with the same recipe and default K400 pre-training). For
K600 pre-training, MViTv2-B 32×3 (29.9 mAP) improves
+1.2 over MViTv1-B-24 32×3. This again validates the ef-
fectiveness of the proposed MViTv2 improvements in §4.1
of the main paper. Using full-resolution testing (without
cropping) can further improve MViTv2-B by +0.6 to achieve
30.5 mAP. Finally, the larger MViTv2-L 40×3 achieves the

val mAP
model pretrain center full FLOPs Param
SlowFast, 4×16, R50 [23]

K400

21.9 - 52.6 33.7
SlowFast, 8×8, R101 [23] 23.8 - 137.7 53.0
MViTv1-B, 16×4 [21] 24.5 - 70.5 36.4
MViTv1-B, 64×3 [21] 27.3 - 454.7 36.4
MViTv2-S, 16×4 26.8 27.6 64.5 34.3
MViTv2-B, 32×3 28.1 29.0 225.2 51.0
SlowFast, 8×8 R101+NL [23]

K600

27.1 - 146.6 59.2
SlowFast, 16×8 R101+NL [23] 27.5 - 296.3 59.2
X3D-XL [22] 27.4 - 48.4 11.0
Object Transformer [80] 31.0 - 243.8 86.2
ACAR 8×8, R101-NL [60] - 31.4 N/A N/A
MViTv1-B, 16×4 [21] 26.1 - 70.4 36.3
MViTv1-B-24, 32×3 [21] 28.7 236.0 52.9
MViTv2-B, 32×3 29.9 30.5 225.2 51.0
ACAR 8×8, R101-NL [60] K700 - 33.3 N/A N/A
MViTv2-B, 32×3 K700 31.3 32.3 225.2 51.0
MViTv2-L↑ 3122, 40×3 IN21K+K700 33.5 34.4 2828 213.0

Table A.2. Comparison with previvous work on AVA v2.2. We
adopt two test strategies: 1) center (single center crop): we resize
the shorter spatial side to 224 pixels and takes a 2242 center crop
for inference. 2) full (full-resolution): we resize the shorter spatial
side to 224 pixels and take the full image for inference. We report
inference cost with the center testing strategy (i.e. 2242 input).
Magnitudes are Giga (109) for FLOPs and Mega (106) for Param.

state-of-the-art results at 34.4 mAP using IN-21K and K700
pre-training.

A.3. Results: ImageNet Classification

Results of ImageNet-1K. Table A.3 shows the comparison
of our MViTv2 with more prior work (without external data
or distillation models) on ImageNet-1K. As shown in the
Table, our MViTv2 achieves better results than any previ-
ously published methods for a variety of model complexities.
We note that our improvements to pooling attention bring
significant gains over the MViTv1 [21] counterparts which
use exactly the same training recipes (for all datasets we
compare on); therefore the gains over MViTv1 stem solely
from our technical improvements in §4.1 of the main paper.

A.4. Ablations: ImageNet and COCO

Decomposed relative position embeddings. As introduced
in Sec. 4.1, our Relative position embedding is only applied
for Qi by default. We could further extend it to all Q, K and
V terms for attention layers:

Attn(Q,K, V ) = AV + E(relv),

where A = Softmax
(
(QK⊤ + E(relq) + E(relk))/

√
d
)
.



Acc
model center resize FLOPs (G) Param (M)

RegNetY-4GF [62] 80.0 4.0 21
RegNetZ-4GF [15] 83.1 4.0 28
EfficientNet-B4 ↑ 3802 [71] 82.9 4.2 19
DeiT-S [72] 79.8 4.6 22
PVT-S [78] 79.8 3.8 25
TNT-S [33] 81.5 5.2 24
T2T-ViTt-14 [85] 81.7 6.1 22
CvT-13 [81] 81.6 4.5 20
Twins-S [11] 81.7 2.9 24
ViL-S-RPB [89] 82.4 4.9 25
PVTv2-V2 [77] 82.0 4.0 25
CrossViTc-15 [9] 82.3 6.1 28
XCiT-S12 [18] 82.0 4.8 26
Swin-T [55] 81.3 4.5 29
CSWin-T [16] 82.7 4.3 23
MViTv2-T 82.3 4.7 24
RegNetY-8GF [62] 81.7 8.0 39
EfficientNet-B5 ↑ 4562 [71] 83.6 9.9 30
PVT-M [78] 81.2 6.7 44
T2T-ViTt-19 [85] 82.4 9.8 39
CvT-21 [81] 82.5 7.1 32
Twins-B [11] 83.2 8.6 56
ViL-M-RPB [89] 83.5 8.7 40
PVTv2-V2-B3 [77] 83.2 6.9 45
CrossViTc-18 [9] 82.8 9.5 44
XCiT-S24 [18] 82.6 9.1 48
Swin-S [55] 83.0 8.7 50
CSWin-S [16] 83.6 6.9 35
MViT-v1-B-16 [21] 83.0 7.8 37
MViTv2-S 83.6 7.0 35
RegNetY-16GF [62] 82.9 15.9 84
RegNetZ-16GF [15] 84.1 15.9 95
EfficientNet-B6 ↑ 5282 [71] 84.2 19 43
NFNet-F0 ↑ 2562 [5] 83.6 12.4 72
DeiT-B [72] 81.8 17.6 87
PVT-L [78] 81.7 9.8 61
T2T-ViTt-21 [85] 82.6 15.0 64
TNT-B [33] 82.9 14.1 66
Twins-L [11] 83.7 15.1 99
ViL-B-RPB [89] 83.7 13.4 56
PVTv2-V2-B5 [77] 83.8 11.8 82
CaiT-S36 [74] 83.3 13.9 68
XCiT-M24 [18] 82.7 16.2 84
Swin-B [55] 83.3 15.4 88
CSWin-B [16] 84.2 15.0 78
MViTv1-B-24 [21] 83.4 10.9 54
MViTv2-B 84.4 10.2 52
EfficientNet-B7 ↑ 6002 [71] 84.3 37.0 66
NFNet-F1 ↑ 3202 [5] 84.7 35.5 133
DeiT-B ↑ 3842 [72] 83.1 55.5 87
TNT-B ↑ 3842 [33] 83.9 N/A 66
CvT-32 ↑ 3842 [81] 83.3 24.9 32
CaiT-S36↑ 3842 [74] 85.0 48 68
Swin-B ↑ 3842 [55] 84.2 47.0 88
MViT-v1-B-24 ↑ 3202 [21] 84.8 32.7 73
MViTv2-B ↑ 3842 85.2 85.6 36.7 52
NFNet-F2 ↑ 3522 [5] 85.1 62.6 194
XCiT-M24 [18] 82.9 36.1 189
CoAtNet-3 [13] 84.5 34.7 168
MViTv2-L 85.3 42.1 218
NFNet-F4 ↑ 5122 [5] 85.9 215.3 316
CoAtNet-3 [13] ↑ 3842 85.8 107.4 168
MViTv2-L ↑ 3842 86.0 86.3 140.2 218

Table A.3. Comparison to previous work on ImageNet-1K. Input
images are 224×224 by default and ↑ denotes using different sizes.
MViT is trained for 300 epochs without any external data or models.
We report our ↑ 3842 models tested using a center crop or a resized
full crop of the original image, to compare to prior work.

rel pos IN-1K COCO
relq relk relv Acc Mem(G) Test (im/s) APbox APmask

✓ ✕ ✕ 83.6 6.2 316 49.9 45.0
✕ ✓ ✕ 83.4 6.2 321 49.7 44.8
✓ ✓ ✕ 83.6 6.4 300 50.0 45.0
✕ ✕ ✓ 83.6 30.8 109 OOM OOM
✓ ✕ ✓ 83.7 30.9 104 OOM OOM
✓ ✓ ✓ 83.6 30.9 103 OOM OOM

Table A.4. Ablation of rel pos embeddings on ImageNet-1K and
COCO with MViT-S.

And the rel pos terms are defined as:

E
(relq)
ij =Qi ·Rq

p(i),p(j),

E
(relk)
ij =Rk

p(i),p(j) ·Ki,

E
(relv)
i =

∑
j

Aij ∗Rv
p(i),p(j).

Table A.4 shows the ablation experiments: different variants
achieve similar accuracy on ImageNet and COCO. However
relv requires more GPU memory (e.g. 30.8G vs 6.2G on
ImageNet and out-of-memory (OOM) on COCO) and has
a ∼2.9×lower test throughput on ImageNet. For simplicity
and efficiency, we use only relq by default.

Effect of pre-training datasets for detection. In §6.2 of
the main paper we observe that ImageNet pre-training can
have very different effects for different model sizes for video
classification. Here, we are interested in the impact of pre-
training on the larger IN-21K vs. IN-1K for COCO object
detection tasks. Table A.5 shows our ablation: The large-
scale IN-21K pre-training is more helpful for larger models,
e.g. MViT-B and MViT-L have +0.5 and +0.9 gains in APbox.

variant
APbox APmask

IN-1k IN-21k IN-1k IN-21k
MViTv2-S 49.9 50.2 45.1 45.1
MViTv2-B 51.0 51.5 45.7 46.4
MViTv2-L 51.8 52.7 46.2 46.8

Table A.5. Effect of pre-training datasets for COCO. Detection
methods are initialized from IN-1K or IN-21K pre-trained weights.

A.5. Ablations: Kinetics Action Classification

In §5.3 of the main paper we ablated the impact of our
improvements to pooling attention, i.e. decomposed relative
positional embeddings & residual pooling connections, for
image classification and object detection. Here, we ablate
the effect of our improvements for video classification.

Positional embeddings for video. Table A.6 compares dif-
ferent positional embeddings for MViTv2 on K400. Similar
to image classification and object detection (Table 6 of the
main paper), relative positional embeddings surpass absolute



rel. pos.
abs. pos.

Top-1 Train Param
space time (%) (clip/s) (M)

(1) no pos. 80.1 91.5 34.4
(2) abs. pos. ✓ 80.4 91.0 34.7
(3) time-only rel. ✓ 80.8 80.5 34.4
(4) space-only rel. dec. 80.6 76.2 34.5
(5) dec. space rel. + time rel. dec. ✓ 81.0 66.6 34.5
(6) joint space rel. + time rel. joint ✓ 81.1 33.6 37.1
(7) joint space/time rel. joint - 8.4 73.7

Table A.6. Ablation of positional embeddings on K400 with
MViTv2-S 16×4. Training throughput is measured by average clips
per-second with 8 V100 GPUs. Our (5) decomposed space/time
rel. positional embeddings are accurate and significantly faster
than other joint versions. Note that we do not finish the full train-
ing for (7) joint space/time rel. as the training speed is too slow
(∼8× slower than ours) and (6) joint space rel. already shows large
drawbacks (∼2× slower) of joint rel. positional embeddings.

positional embeddings by ∼0.6% comparing (2) and (5, 6).
Comparing (5) to (6), our decomposed space/time rel. po-
sitional embeddings achieve nearly the same accuracy as
the joint space rel. embeddings while being ∼2× faster in
training. For joint space/time rel. (5 vs. 7), our decomposed
space/time rel. is even ∼8×faster with ∼2×fewer parame-
ters. This demonstrates the effectiveness of our decomposed
design for relative positional embeddings.

Residual pooling connection for video. Table A.7 studies
the effect of residual pooling connections on K400. We ob-
serve similar results as for image classification and object
detection (Table 7 of the main paper), that: both Q pool-
ing blocks and residual paths are essential in our improved
MViTv2 and combining them together leads to +1.7% ac-
curacy on K400 while using them separately only improves
slightly (+0.4%).

residual pooling Top-1 FLOPs
(1) w/o 79.3 64
(2) full Q pooling 79.7 65
(3) residual 79.7 64
(4) full Q pooling + residual 81.0 65

Table A.7. Ablation of residual pooling connections on K400
with MViTv2-S 16×4 architecture.

B. Additional Implementation Details
B.1. Other Upgrades in MViT

Besides the technical improvements introduced in §4.1 of
the main paper, MViT entails two further changes: (i) We
conduct the channel dimension expansion in the attention
computation of the first transformer block of each stage,
instead of performing it in the last MLP block of the prior
stage as in MViTv1 [21]. This change has similar accuracy
(±0.1%) to the original version, while reducing parameters
and FLOPs. (ii) We remove the class token in MViT by

default as this has no advantage for image classification
tasks. Instead, we average the output tokens from the last
transformer block and apply the final classification head
upon it. In practice, we find this modification could reduce
the training time by ∼8%.

B.2. Details: ImageNet Classification

IN-1K training. We follow the training recipe of
MViTv1 [21,72] for IN-1K training. We train for 300 epochs
with 64 GPUs. The batch size is 32 per GPU by default.
We use truncated normal distribution initialization [35] and
adopt synchronized AdamW [58] optimization with a base
learning rate of 2× 10−3 for batch size of 2048. We use a
linear warm-up strategy in the first 70 epochs and a decayed
half-period cosine schedule [72].

For regularization, we set weight decay to 0.05
for MViTv2-T/S/B and 0.1 for MViTv2-L/H and label-
smoothing [70] to 0.1. Stochastic depth [41] (i.e. drop-path
or drop-connect) is also used with rate 0.1 for MViTv2-T &
MViTv2-S, rate 0.3 for MViTv2-B, rate 0.5 for MViTv2-L
and rate 0.8 for MViTv2-H. Other data augmentations have
the same (default) hyperparameters as in [21, 73], includ-
ing mixup [88], cutmix [87], random erasing [91] and rand
augment [12].

For 384×384 input resolution, we fine-tune the models
trained on 224×224 resolution. We decrease the batch size
to 8 per GPU and fine-tune 30 epochs with a base learning
rate of 4× 10−5 per 256 batch-size samples. For MViTv2-
L and MViTv2-H, we disable mixup and fine-tune with a
learning rate of 5× 10−4 per batch of 64. We linearly scale
learning rates with the number of overall GPUs (i.e. the
overall batch-size).

IN-21K pre-training and fine-tuning on IN-1K. We down-
load the latest winter-2021 version of IN-21K from the offi-
cial website. The training recipe follows the IN-1K training
introduced above except for some differences described next.
We train the IN-21K models on the joint set of IN-21K
and 1K for 90 epochs (60 epochs for MViTv2-H) with a
6.75× 10−5 base learning rate for MViTv2-S and MViTv2-
B, and 10−4 for MViTv2-L and MViTv2-H, per batch-size
of 256. The weight decay is set as 0.01 for MViTv2-S and
MViTv2-B, and 0.1 for MViTv2-L and MViTv2-H.

When fine-tuning IN-21K MViTv2 models on IN-1K for
MViTv2-L and MViTv2-H, we disable mixup and fine-tune
for 30 epochs with a learning rate of 7× 10−5 per batch of
64. We use a weight decay of 5× 10−2. The MViTv2-H ↑
5122 model is initialized from the 3842 variant and trained
for 3 epochs with mixup enabled and weight decay of 10−8.

B.3. Details: COCO Object Detection

For object detection experiments, we adopt two typical
object detection framework: Mask R-CNN [36] and Cascade



Mask R-CNN [6] in Detectron2 [82]. We follow the same
training settings from [55]: multi-scale training (scale the
shorter side in [480, 800] while longer side is smaller than
1333), AdamW optimizer [58] (β1, β2 = 0.9, 0.999, base
learning rate 1.6×10−4 for base size of 64, and weight decay
of 0.1), and 3×schedule (36 epochs). The drop path rate is
set as 0.1, 0.3, 0.4, 0.5 and 0.6 for MViTv2-T, MViTv2-S,
MViTv2-B, MViTv2-L and MViTv2-H, respectively. We
use PyTorch’s automatic mixed precision during training.

For the stronger recipe for MViTv2-L and MViTv2-H
in Table. 5 of the main paper, we use large-scale jittering
(1024×1024 resolution) as the training augmentation [26]
and a longer schedule (50 epochs) with IN-21K pre-training.

B.4. Details: Kinetics Action Classification

Training from scratch. We follow the training recipe and
augmentations from [19, 21] when training from scratch for
Kinetics datasets. We adopt synchronized AdamW [58] and
train for 200 epochs with 2 repeated augmentation [40] on
128 GPUs. The mini-batch size is 4 clips per GPU. We adopt
a half-period cosine schedule [57] of learning rate decaying.
The base learning rate is set as 1.6×10−3 for 512 batch-size.
We use weight decay of 0.05 and set drop path rate as 0.2
and 0.3 for MViTv2-S and MViTv2-B.

For the input clip, we randomly sample a clip (T frames
with a temporal stride of τ ; denoted as T × τ [23]) from the
full-length video during training. For the spatial domain, we
use Inception-style [69] cropping (randomly resize the input
area between a [min, max], scale of [0.08, 1.00], and jitter
aspect ratio between 3/4 to 4/3). Then we take an H ×W =
224×224 crop as the network input.

During inference, we apply two testing strategies follow-
ing [21, 23]: (i) Temporally, uniformly samples K clips (e.g.
K=5) from a video. (ii) in spatial axis, scales the shorter
spatial side to 256 pixels and takes a 224×224 center crop
or 3 crops of 224×224 to cover the longer spatial axis. The
final score is averaged over all predictions.

For the input clips, we perform the same data augmen-
tations across all frames, including random horizontal flip,
mixup [88] and cutmix [87], random erasing [91], and rand
augment [12].

For Kinetics-600 and Kinetics-700, all hyper-parameters
are identical to K400.

Fine-tuning from ImageNet. When using IN-1K or IN-21K
as pre-training, we adopt the initialization scheme introduced
in §4.3 of the main paper and shorter training schedules. For
example, we train 100 epochs with base learning rate as
4.8× 10−4 for 512 batch-size when fine-tuning from IN-1K
for MViTv2-S and MViTv2-B, and 75 epochs with base
learning as 1.6× 10−4 when fine-tuning from IN-21K. For
long-term models with 40×3 sampling, we initialize from
the 16×4 counterparts, disable mixup, train for 30 epochs

with learning rate of 1.6 × 10−5 at batch-size of 128, and
use a weight decay of 10−8.

B.5. Details: Something-Something V2 (SSv2)

The SSv2 dataset [31] contains 169k training, and 25k
validation videos with 174 human-object interaction classes.
We fine-tune the pre-trained Kinetics models and take the
same recipe as in [21]. Specifically, we train for 100 epochs
(40 epochs for MViTv2-L) using 64 or 128 GPUs with 8
clips per GPU and a base learning rate of 0.02 (for batch
size of 512) with half-period cosine decay [57]. We adopt
synchronized SGD and use weight decay of 10−4 and drop
path rate of 0.4. The training augmentation is the same as
Kinetics in §B.4, except we disable random flipping and
repeated augmentations in training.

We use the segment-based input frame sampling [21, 52]
(split each video into segments, and sample one frame from
each segment to form a clip). During inference, we take a
single clip with 3 spatial crops to form predictions over a
single video.

B.6. Details: AVA Action Detection

The AVA action detection dataset [32] assesses the spa-
tiotemporal localization of human actions in videos. It has
211k training and 57k validation video segments. We evalu-
ate methods on AVA v2.2 and use mean Average Precision
(mAP) metric on 60 classes as is standard in prior work [23].

We use MViTv2 as the backbone and follow the same de-
tection architecture in [21,23] that adapts Faster R-CNN [64]
for video action detection. Specifically, we extract region-of-
interest (RoI) features [29] by frame-wise RoIAlign [36] on
the spatiotemporal feature maps from the last MViTv2 layer.
The RoI features are then max-pooled and fed to a per-class,
sigmoid classifier for action prediction.

The training recipe is identical to [21] and summarized
next. We pre-train our MViTv2 models on Kinetics. The re-
gion proposals are identical to the ones used in [21, 23]. We
use proposals that have overlaps with ground-truth boxes by
IoU > 0.9 for training. The models are trained with synchro-
nized SGD training on 64 GPUs (8 clips per GPU). The base
learning rate is set as 0.6 with a half-period cosine schedule
of learning rate decaying. We train for 30 epochs with linear
warm-up [30] for the first 5 epochs and use a weight decay
of 1× 10−8 and drop-path rate of 0.4.

C. Additional Discussions

Societal impact. Our MViTv2 is a general vision backbone
for various vision tasks, including image recognition, object
detection, instance segmentation, video classification and
video detection. Though we are not providing any direct
applications, it could potentially apply to a wide range of
vision-related applications, which then might have a wide



range of societal impacts. On the positive side, the bet-
ter vision backbone could potentially improve the perfor-
mance of many different computer vision applications, e.g.
visual inspection and quality management in manufactur-
ing, cancer and tumor detection in healthcare, and vehicle
re-identification and pedestrian detection in transportation.

On the other hand, the advanced vision recognition tech-
nologies could also have potential negative societal impact
if they are adopted by harmful or mismanaged applications,
e.g. usage in surveillance systems that violate privacy. It is
important to be aware when vision technologies are deployed
in practical applications.

Limitations. Our MViTv2 is a general vision backbone and
we demonstrate its effectiveness on various recognition tasks.
To reduce the full hyperparameter tuning space for MViTv2
on different datasets and tasks, we mainly follow the ex-
isting standard recipe for each task from the community
(e.g. [21, 55, 73]) with lightweight tuning (e.g. learning rate,
weight decay). Therefore, the choice of hyperparameters for
different MViTv2 variants may be suboptimal.

In addition, MViTv2 provides five different variants from
tiny to huge models with different complexity as a general
backbone. In the future, we think there are two potential
interesting research directions: scaling down MViTv2 to
even smaller models for mobile applications, and scaling up
MViTv2 to even larger models for large-scale data scenarios.

References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun,
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