Abstract

This supplementary material is organized as follows: 1)
section A: a more detailed introduction to predicate proba-
bility distribution. 2) section B: more quantitative studies.

A. Predicate probability distribution

In this section, predicate probability distribution (PPD)
we mentioned in Section 3 will be elaborated with more
details.

As we mentioned in Section 3.2.1, we represent each
predicate class as a prediction probability distribution with a
dimension of predicate categories. In particular, on VG150
dataset with 50 predicate categories, each predicate can
be represented as a vector with dimension 50, where each
dimension represents the estimated prediction probability
over the corresponding predicate class. And the mapping
relationship between each dimension of predicate probabil-
ity distribution and the corresponding predicate category is
fixed and corresponds to the dictionary order of each class
of predicates. As shown in Fig.7, we illustrate the PPD of
the predicate “walking on”, which is generated by the VC-
Tree+PPDL method on the VG150 dataset.

Just as we discussed in Section 3.2.2, in order to estimate
the real probability distribution of each predicate class, we
propose a dynamic updating strategy for the PPD during
training time. And here, to further elaborate the PPD dy-
namic updating process in more detail, we demonstrate the
dynamic updating process in Fig.6. As shown in Fig.6, a
vector with a value of 1 in the corresponding dimension of
the predicate “walking on” is used to initialize the PPD of
“walking on”, and then the average PPD of each mini-batch
is used to update previous estimated PPD by the hyperpa-
rameter «. Finally, the estimated predicate probability dis-
tribution of the predicate “walking on” can be obtained at
the end of training.

B. Quantitative studies

The full results of SGG, including both conventional
Recall@K and the adopted mean Recall @K, are given in
Table 6. Although our proposed PPDL method shows
some performance degradation in the Recall@K metric, our
method achieves comparable or less performance loss on
Recall@K than most other debiasing methods (e.g., TDE
[28], CogTree [38]), and at the same time, it achieves a more
substantial mean Recall @K performance improvement.

To quantitatively illustrate the outstanding performance
of our proposed PPDL method in eliminating the long-tailed
bias, we show the mean Recall@100 of each 10 predicate
classes among the top 50 frequent predicate categories in

1
e 0.8
0.7 0.6
0.6 04
0.5 02
04
0
03
02 $ & & &
d : A
5 W
g | | S & &
$ &£ <]
$ $ $ $
& 3 &% >
S & &

Initial PPD

PPD calculated in each mini-batch

Estimated PPD

Figure 6. A brief illustration about the dynamic updating strat-
egy for the predicate probability distribution of predicate “walking
on”.

Average R@100
Method [1-10 1120 21-30 3140 41-50
VCTreet [29] 60.8 17.8 16.1 3.1 1.9
VCTreef+PPDL 39.1 275 429 356 368
Unbiased? [28] 56.6 386 444 18.6 2.4
Unbiased?+PPDL | 53.5 395 50.3 348 17.5

Table 5. Mean Recall@100 metrics of each 10 predicate classes
among the top-50 frequent predicate categories in the PredCls task
on VG150. The Unbiased [28] method means the TDE method
applying on the VCTree [29] baseline, and it is equivalent to the
previously mentioned VCTree+TDE method. t and I are with the
same meaning as in Table 1 of the main paper.

Table 5. Intuitively, we can see that the performance of
tail predicate classes improves significantly on both the bi-
ased VCTree method and the unbiased TDE method after
applying our PPDL method, and this result indicates that
our method can significantly improve the performance of
low-frequency predicates and thus effectively eliminate the
long-tailed bias of SGG.

Furthermore, the detailed predicate-level Recall@ 100 on
PredCls sub-task of all four models, VCTree baseline and
TDE vs. VCTree+PPDL and VCTree+PPDL&TDE, are il-
lustrated in Fig.8. It is clear that our method performs bet-
ter on tail predicate classes compared to the VCTree base-
line, and impressively we can see that applying both PPDL
and TDE to the VCTree baseline can further improve the
performance on tail predicate classes with limited perfor-
mance loss on head classes. The TDE method [28] elimi-
nates the visual bias by masking the visual features in the
bounding box region and further applies counterfactual in-
ference to generate an unbiased scene graph. Thus, we spec-
ulate that it is the annotation error of the fixed ground truth
bounding box that undermines the effectiveness of the TDE
method. In SGCls task, the performance improvement of
VCTree+TDE+PPDL combination is poor due to the fixed
bounding box and the lack of ground truth object labels.

Predicate Classification Scene Graph Classification Scene Graph Generation
Method | mR@20/50/100 R@20/50/100 | mR@20/50/100 R@20/50/100 | mR@20/50/100 R@20/50/100
IMPT [12] -/9.8/10.5 52.7/59.3/61.3 - 15.8/6 31.7/34.6/35.4 -13.8/4.8 14.6/20.7/24.5
MOTIEST [41] 10.8/14.0/15.3 58.5/65.2/67.1 6.3/7.7/8.2 32.9/35.8/36.5 4.2/5.7/6.6 21.4/27.2/30.3
VCTreet [29] 14.0/17.9/19.4 60.1/66.4/68.1 8.2/10.1/10.8 35.2/38.1/38.8 5.2/6.9/8.0 22.0/27.9/31.3
PCPLT [34] - /35.2/37.8 - /50.8/52.6 - /18.6/19.6 - /27.6/28.4 -/9.5/11.7 - /14.6/18.6
IMP+EBMLT [26] 9.43/11.8/12.8 -/-1- 5.7/6.8/7.2 -/-/- 2.8/4.2/5.4 -/-1-
IMP*+PPDL 22.3/24.8/25.3 38.4/39.5/39.7 13.0/14.2/15.9 24.5/25.8/26.7 7.8/9.8/10.4 14.4/18.5/19.4
MOTIFS+TDET [2§] 18.5/25.5/29.1 33.6/46.2/51.4 9.8/13.1/14.9 21.7/27.7/29.9 5.8/8.2/9.8 12.4/16.9/20.3
MOTIFS+CogTree' [38] 20.9/26.4/29.0 31.1/35.6/36.8 12.1/14.9/16.1 19.4/21.6/22.2 7.9/10.4/11.8 15.7/20.0/22.1
MOTIFS+EBMLT [26] 14.2/18.0/19.5 -/-/- 8.2/10.2/11.0 -/-/- 5.6/7.7/9.1 -/-1-
MOTIFS*+PPDL 27.9/32.2/33.3 44.4/47.2/47.6 15.8/17.5/18.2 26.6/28.4/29.3 9.2/11.4/13.5 17.7/21.2/23.9
VCTree+TDET [28] 18.4/25.4/28.7 36.2/47.2/51.6 8.9/12.2/14.0 19.9/25.4/27.9 6.9/9.3/11.1 14.0/19.4/23.2
VCTree+CogTreet [38] 22.0/27.6/29.7 39/44.0/45.4 15.4/18.8/19.9 27.8/30.9/31.7 7.8/10.4/12.1 14.0/18.2/20.4
VCTree+EBMLT [26] 14.2/18.2/19.7 -/-1- 10.4/12.5/13.5 -/-1- 5.7/1.7/9.1 -/-1-
VCTree+TDE&EBMLT [26] 19.9/26.7/30.0 -/-1- 13.9/18.2/20.5 -/-1- 7.1/9.7/11.6 -/-1-
VCTree*+PPDL 29.7/33.3/33.8 45.1/47.6/48.0 20.3/21.8/22.4 20.4/32.1/33.0 9.1/11.3/13.3 16.7/20.1/22.9
VCTree+TDE!&PPDL 25.3/33.0/36.2 34.7/41.6/43.6 16.2/20.2/22.0 20.4/24.8/26.2 9.4/12.2/14.4 9.8/13.6/16.5

Table 6. Comparison of Recall@K and mean Recall@K for PredCls, SGCls and SGGen tasks on VG150. T and i are with the same
meaning as in Table 1 of the main paper.

0.6
205
£04
Eo.s
20.2 i
a 0.1 | |
0 ——————— T ——r—r—r e — = =
O &S0 XSO & % &o&% SIS LI E LI L P S O S L2
SEEFTH Bl TN %\ e T & T S RS
SIEET SRESEHTET S0 O SINEY T T ST T
\0%0 ‘5{\ Qz}o 00 %Zb‘\% > ACERS) '69 QQ Q‘b' N) %@ & qur
Predicates

Figure 7. The estimated probability distribution of predicate “walking on” generated by VCTree+PPDL method.

B VCTree ®VCTreetTDE ™ VCTree+PPDL VCTree+PPDL&TDE

il

T T T ml

SR LAG L KO 3 2T LIS IS DO S F LS Q%%eq SO
0&‘&%& TR .\\Q &00\ @‘K QQQQ S0 NS 0\0 oﬁO%\ 000\
&‘Z" 04‘%%\0%Q X &b%o% % %©%0%®4 @% OUS) %&&‘g&%@%@% %erg‘ﬁ‘v%% «\é‘i_&o"

& SeF & RO o° & 43%

Figure 8. Performance comparison among several methods on VG150 dataset. The constrained R@ 100 for the top 50 predicate classes on
the PredCls task is presented. Best viewed in color.

