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In this supplementary material, we first explain in detail
the difference between this work and the previous works.
Then we provide a justification of our statement in the main
paper “the performance of the channel pruned network is
upper bounded by the original network”. The we show how
residual blocks with skip connections are pruned in Sec. 3.
Finally, more experimental results are given in Sec. 4.

1. Difference with Other Works
In the main paper, we explained the main difference be-

tween our work and [4, 8]. In this supplementary, we pro-
vide a detailed comparison between our work and [4, 8].
Difference with [8]: Our work is different from [8] in the
following aspects.

1) Aim. The aim of [8] is to identify the value of net-
work pruning as discovering the network architecture
whereas our aim is to propose random pruning as a
neutral baseline to compare different pruning methods.

2) Method. How to select the pruning ratio is not thor-
oughly investigated in [8] while our work uses random
pruning.

3) Empirical study. The empirical study in [8] is mostly
done pairwise by comparing a network resulting from
a pruning algorithm and the one trained from scratch.
Comparison between different pruning criteria is not
done. Our work thoroughly compares 6 pruning crite-
ria and 1 architecture search method.

Difference with [4]: Our work is different from [4] in the
following aspects.

1) Perspective. The analysis in [4] is conducted on sin-
gle layers while our work evaluates the overall network
performance.

2) Conclusion. The theoretical and empirical analysis in
[4] mainly support the similarity between norm based
pruning criteria. Yet, the empirical study does not

support the similarity between importance-based, BN-
based, and activation-based pruning criteria. Our study
discovers comparable performances between norm-
based, importance-based, sensitivity-based, and search
based methods.

3) Enlightenment. The study in [4] “guides and moti-
vates the researchers to design more reasonable crite-
ria” while our study finds out that advanced pruning
criteria behaves just comparable with the naive L1/L2
norm “calls for an optimized sampling method that im-
proves the search efficiency”.

2. Upper Bounded Performance of Channel
Pruning.

In the this section, we provide the justification of the
statement in the main paper “the performance of the channel
pruned network is upper bounded by the original network”.

In the paper “The Lottery Ticket Hypothesis”, the au-
thors showed that some pruned networks could learn faster
while reaching higher test accuracy and generalizing better
than the original one [1]. Yet, the conclusion is derived for
unstructured pruning. The problems of unstructured prun-
ing and structured pruning are quite different. Unstructured
pruning removes single connections in a CNN and results
in irregular kernels. And it is possible that the number
of kernels in the resultant sparse network is the same as
the original network. The capacity of a network could be
fully utilized by the sparse network. This is why unstruc-
tured pruning could easily lead to an extremely pruned net-
work without accuracy drop while for structured pruning re-
searchers struggle with the trade-off between accuracy drop
and compression ratio. Without expanding the search space
(i.e. changing the position of pooling layers [7], widening
the network [5, 12, 13]), it is very difficult to find a pruned
network with better performance. Thus, we can safely con-
clude that the performance of channel pruned networks is
upper bounded by the original networks.
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Criterion
Top-1

Error (%)
Top-5

Error (%)
FLOPs [G] /

Ratio (%)
Params /
Ratio (%)

VGG, CIFAR10
Baseline 5.67 0.58 313.80 /100.00 14.73M /100.00

L1 6.1 0.69 160.50 /51.15 5.05M /34.32
L2 6.06 0.67 150.60 /47.99 6.20M /42.11
GM 5.99 0.52 154.60 /49.27 4.13M /28.04
TE 6.51 0.61 157.00 /50.03 5.84M /39.63
ES 6.21 0.64 157.20 /50.10 7.06M /47.90
KL 6.19 0.66 161.50 /51.47 6.52M /44.26

ResNet20, CIFAR10
Baseline 7.48 0.61 41.20 /100.00 272.5k /100.00

L1 9.03 0.48 20.90 /50.73 170.1k /62.43
L2 8.65 0.55 20.60 /50.00 169.9k /62.37
GM 8.69 0.6 20.90 /50.73 188.9k /69.31
TE 8.96 0.46 20.90 /50.73 164.1k /60.23
ES 8.5 0.63 25.60 /62.14 207.8k /76.24
KL 8.77 0.46 20.10 /48.79 165.2k /60.64

ResNet56, CIFAR10
Baseline 5.58 0.26 126.80 /100.00 855.8k /100.00

L1 6.72 0.79 63.60 /50.16 503.6k /58.85
L2 6.52 0.76 64.70 /51.03 471.4k /55.08
GM 6.39 0.77 65.40 /51.58 504.0k /58.89
TE 6.86 0.59 65.70 /51.81 442.4k /51.69
ES 6.59 0.67 65.80 /51.89 545.6k /63.75
KL 7.12 0.67 65.20 /51.42 443.3k /51.80

ResNet20, CIFAR100
Baseline 31.53 9.87 41.20 /100.00 278.3k /100.00

L1 33.41 10.42 20.80 /50.49 176.2k /63.29
L2 33.39 10.62 21.00 /50.97 175.9k /63.20
GM 33.32 10.35 20.60 /50.00 183.8k /66.03
GW 34.24 10.92 20.00 /48.54 168.8k /60.65
ES 33.81 10.13 21.00 /50.97 176.3k /63.34
KL 33.32 10.62 21.20 /51.46 187.5k /67.35

ResNet56, CIFAR100
Baseline 27.59 9.24 126.80 /100.00 861.6k /100.00

L1 30.15 9.34 63.20 /49.84 470.8k /54.64
L2 29.48 9.43 65.80 /51.89 513.6k /59.61
GM 29.2 9.35 62.30 /49.13 559.4k /64.92
TE 29.01 9.33 65.50 /51.66 534.3k /62.01
ES 29.49 9.16 64.20 /50.63 554.4k /64.34
KL 29.23 9.3 65.10 /51.34 568.0k /65.92

Table 1. Benchmarking channel pruning criteria on CIFAR10 and
CIFAR100 image classification under the scheme of random prun-
ing.

3. Pruning Residual Blocks
Pruning a normal convolutional layer is straightfor-

ward. But when it comes to the residual blocks in Mo-
bileNetV2 [11] and ResNet [2], some special measures
should be taken. For the residual blocks in MobileNetV2
and ResNet, there is a skip connection that adds the input of
the block to the output of the block so that the block learns a
residual component. Since the input and output of residual
blocks are connected, the number of output channels of sev-
eral residual blocks are the same. When pruning the resid-
ual block, their output channels should be pruned together.
For both of the pruning settings explained in the main pa-
per, i.e. pruning pre-trained network and and pruning from
scratch, we set the same pruning ratio for the convolutional
layers that are connected by skip connection.

Special treatments should also be taken when comput-

(a) Epochs vs error in ResNet18.

(b) Epochs vs. error in ResNet50.

Figure 1. The influence of the random sample size and fine-tuning
epochs on the prediction accuracy.

ing the importance score according to different pruning cri-
teria. I. L1/L2/GM. For the convolutional layers that are
connected by skip connection, their individual importance
scores are first computed and then added up. The summa-
tion result is used as the final importance score. II. TE.
As in the original paper, gates with weights equal to 1 and
dimensionality equal to the number of output channels are
append to the Batch Normalization layers. The importance
score are first computed based on the gates and then added
for the layers that are skip-connected. III. ES. The max-
imum empirical sensitivity is computed for layers that are
connected by skip connections. IV. KL. To compute the
KL divergence for the output probability of the pruned and
original networks, masks that selects the output channels
should be added to the convolutional layers. For the con-
volutional layers that are skip-connected, we set the same
mask for them so that the same KL divergence score can be
computed for all of them.

4. More Experimental Results

More experimental results are shown in this section. The
results for CIFAR image classification are summarized in
Table 1. Besides the results in the main paper, results of
ResNet20 on CIFAR10 and ResNet56 on CIFAR100 are
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(c) GM.
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(f) ES.

Figure 2. Percentage of remaining channels of the pruned ResNet50 network. The network pruned by different methods are reported. The
pruning ratio is 70%. The Top-1 error, FLOPs, and number of parameters are also reported in the figure.

also included. As in the main paper, a couple of pruning cri-
teria are compared including the traditional L1 and L2 norm
of the filters (L1, L2), and the recent method based on geo-
metric median (GM) [3], Taylor expansion (TE) [10], KL-
divergence importance metric (KL) [9] and empirical sen-
sitivity analysis (ES) [6]. The additional results strengthen
the conclusion in the main paper. That is, under the scheme
of random pruning, the pruning criteria for selecting differ-
ent channels are less important.

The influence of fine-tuning epochs on the final accu-
racy of the pruned network is shown in Fig. 1. The result
for ResNet-50 is shown in Fig. 1b. The result for ResNet-
18 is shown in Fig. 1a. When the number of fine-tuning
epochs is increased from 25 to 100, the Top-1 and Top-5
error of ResNet-50 drops by 0.75% and 0.4%, respectively.
For ResNet-18, the Top-1 error rate and Top-5 error rate
drop by 0.97% and 0.62%, respectively. This shows the sig-
nificant influence of fine-tuning epochs.

In Fig. 2, the ratio of remaining channels for each of
the convolutional layer is plotted. The original network is
ResNet50 for ImageNet classification and the overall prun-
ing ratio is 70%. The Top-1 error, FLOPs, and number of
parameters are also reported in the figure. In Fig. 3, the
accuracy distribution of the random pruned networks with
respect to FLOPs is shown. Note that the networks are only
updated by minimizing the squared difference between the
features maps of the pruned and original network. Fine-

tuning has not been conducted during this step. As can be
seen, both good sub-networks with low error rate and less
accurate sub-networks can be sampled. And the aim is to
search the sub-networks with higher accuracy. Similar to
Fig. 3, the accuracy distribution with respect to the number
of parameters is shown in Fig 4.
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(c) GM.
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(d) TE.
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Figure 3. Accuracy distribution of network samples with respect to FLOPs for different pruning criteria. The original network is ResNet50
trained for ImageNet classification. The network pruning ratio is 70%.
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Figure 4. Accuracy distribution of network samples with respect to the number of parameters for different pruning criteria. The original
network is ResNet50 trained for ImageNet classification. The network pruning ratio is 70%.
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