

# Supplementary Material of Towards Noiseless Object Contours for Weakly Supervised Semantic Segmentation

Jing Li<sup>1,2,4</sup>      Junsong Fan<sup>1,2,3,4</sup>      Zhaoxiang Zhang<sup>1,2,3,4\*</sup>

<sup>1</sup>Institute of Automation, Chinese Academy of Sciences (CASIA)

<sup>2</sup>University of Chinese Academy of Sciences (UCAS)

<sup>3</sup>Centre for Artificial Intelligence and Robotics, HKISI\_CAS

<sup>4</sup>National Laboratory of Pattern Recognition (NLPR)

{lijing2018, fanjunsong2016, zhaoxiang.zhang}@ia.ac.cn

**Segmentation Model’s Performance in Different Categories.** We show the detailed results of the trained Deeplab-ASPP model in Tabs. 1 and 2. Specifically, Tabs. 1 and 2 show the result of SANCE in each category of PASCAL VOC 2012 *val* and *test* sets, respectively. We can see that SANCE gets great performance improvement for almost all the categories compared to other methods, demonstrating the generalization of our approach in different categories.

| Method       | bkg         | aero        | bike        | bird        | boat        | bottle      | bus         | car         | cat         | chair       | cow         | table       | dog         | horse       | mbk         | person      | plant       | sheep       | sofa        | train       | tv          | mean        |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| EM-Adapt [4] | 67.2        | 29.2        | 17.6        | 28.6        | 22.2        | 29.6        | 47.0        | 44.0        | 44.2        | 14.6        | 35.1        | 24.9        | 41.0        | 34.8        | 41.6        | 32.1        | 24.8        | 37.4        | 24.0        | 38.1        | 31.6        | 33.8        |
| CCNN [5]     | 68.5        | 25.5        | 18.0        | 25.4        | 20.2        | 36.3        | 46.8        | 47.1        | 48.0        | 15.8        | 37.9        | 21.0        | 44.5        | 34.5        | 46.2        | 40.7        | 30.4        | 36.3        | 22.2        | 38.8        | 36.9        | 35.3        |
| MIL+seg [6]  | 79.6        | 50.2        | 21.6        | 40.9        | 34.9        | 40.5        | 45.9        | 51.5        | 60.6        | 12.6        | 51.2        | 11.6        | 56.8        | 52.9        | 44.8        | 42.7        | 31.2        | 55.4        | 21.5        | 38.8        | 36.9        | 42.0        |
| SEC [3]      | 82.4        | 62.9        | 26.4        | 61.6        | 27.6        | 38.1        | 66.6        | 62.7        | 75.2        | 22.1        | 53.5        | 28.3        | 65.8        | 57.8        | 62.3        | 52.5        | 32.5        | 62.6        | 32.1        | 45.4        | 45.3        | 50.7        |
| PSA [1]      | 88.2        | 68.2        | 30.6        | 81.1        | 49.6        | 61.0        | 77.8        | 66.1        | 75.1        | 29.0        | 66.0        | 40.2        | 80.4        | 62.0        | 70.4        | 73.7        | 42.5        | 70.7        | 42.6        | <b>68.1</b> | 51.6        | 61.7        |
| SSDD [7]     | 89.0        | 62.5        | 28.9        | 83.7        | 52.9        | 59.5        | 77.6        | 73.7        | 87.0        | <b>34.0</b> | <b>83.7</b> | 47.6        | 84.1        | 77.0        | 73.9        | 69.6        | 29.8        | <b>84.0</b> | 43.2        | 68.0        | <b>53.4</b> | 64.9        |
| BES [2]      | 88.9        | 74.1        | 29.8        | 81.3        | 53.3        | 69.9        | 89.4        | 79.8        | 84.2        | 27.9        | 76.9        | 46.6        | 78.8        | 75.9        | 72.2        | 70.4        | 50.8        | 79.4        | 39.9        | 65.3        | 44.8        | 65.7        |
| <b>Ours:</b> | <b>91.4</b> | <b>78.4</b> | <b>33.0</b> | <b>87.6</b> | <b>61.9</b> | <b>79.6</b> | <b>90.6</b> | <b>82.0</b> | <b>92.4</b> | 33.3        | 76.9        | <b>59.7</b> | <b>86.4</b> | <b>78.0</b> | <b>76.9</b> | <b>77.7</b> | <b>61.1</b> | 79.4        | <b>47.5</b> | 62.1        | 53.3        | <b>70.9</b> |

Table 1. Performance on the PASCAL VOC 2012 *val* set, compared to weakly supervised approaches based only on image-level labels.

| Method       | bkg         | aero        | bike        | bird        | boat        | bottle      | bus         | car         | cat         | chair       | cow         | table       | dog         | horse       | mbk         | person      | plant       | sheep       | sofa        | train       | tv          | mean        |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| EM-Adapt [4] | 76.3        | 37.1        | 21.9        | 41.6        | 26.1        | 38.5        | 50.8        | 44.9        | 48.9        | 16.7        | 40.8        | 29.4        | 47.1        | 45.8        | 54.8        | 28.2        | 30.0        | 44.0        | 29.2        | 34.3        | 46.0        | 39.6        |
| CCNN [5]     | 70.1        | 24.2        | 19.9        | 26.3        | 18.6        | 38.1        | 51.7        | 42.9        | 48.2        | 15.6        | 37.2        | 18.3        | 43.0        | 38.2        | 52.2        | 40.0        | 33.8        | 36.0        | 21.6        | 33.4        | 38.3        | 35.6        |
| MIL+seg [6]  | 78.7        | 48.0        | 21.2        | 31.1        | 28.4        | 35.1        | 51.4        | 55.5        | 52.8        | 7.8         | 56.2        | 19.9        | 53.8        | 50.3        | 40.0        | 38.6        | 27.8        | 51.8        | 24.7        | 33.3        | 46.3        | 40.6        |
| SEC [3]      | 83.5        | 56.4        | 28.5        | 64.1        | 23.6        | 46.5        | 70.6        | 58.5        | 71.3        | 23.2        | 54.0        | 28.0        | 68.1        | 62.1        | 70.0        | 55.0        | 38.4        | 58.0        | 39.9        | 38.4        | 48.3        | 51.7        |
| PSA [1]      | 89.1        | 70.6        | 31.6        | 77.2        | 42.2        | 68.9        | 79.1        | 66.5        | 74.9        | 29.6        | 68.7        | 56.1        | 82.1        | 64.8        | 78.6        | 73.5        | 50.8        | 70.7        | 47.7        | 63.9        | 51.1        | 63.7        |
| SSDD [7]     | 89.5        | 71.8        | 31.4        | 79.3        | 47.3        | 64.2        | 79.9        | 74.6        | 84.9        | 30.8        | 73.5        | 58.2        | 82.7        | 73.4        | 76.4        | 69.9        | 37.4        | 80.5        | 54.5        | <b>65.7</b> | 50.3        | 65.5        |
| BES [2]      | 89.0        | 72.7        | 30.4        | 84.6        | 47.5        | 63.0        | 86.8        | 80.7        | 85.2        | 30.1        | 76.5        | 56.4        | 81.8        | 79.9        | 77.0        | 67.8        | 48.6        | 82.3        | 57.2        | 54.0        | 46.7        | 66.6        |
| <b>Ours:</b> | <b>91.6</b> | <b>82.6</b> | <b>33.6</b> | <b>89.1</b> | <b>60.6</b> | <b>76.0</b> | <b>91.8</b> | <b>83.0</b> | <b>90.9</b> | <b>33.5</b> | <b>80.2</b> | <b>64.7</b> | <b>87.1</b> | <b>82.3</b> | <b>81.7</b> | <b>78.3</b> | <b>58.5</b> | <b>82.9</b> | <b>60.9</b> | 53.9        | <b>53.5</b> | <b>72.2</b> |

Table 2. Performance on the PASCAL VOC 2012 *test* set, compared to weakly supervised approaches based only on image-level labels.

## References

- [1] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In *CVPR*, 2018. 1
- [2] L. Chen, Weiwei Wu, Chenchen Fu, Xiaojing Han, and Yun-Tao Zhang. Weakly supervised semantic segmentation with boundary exploration. In *ECCV*, 2020. 1

\* Corresponding author

- [3] Alexander Kolesnikov and Christoph H Lampert. Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In *ECCV*, 2016. [1](#)
- [4] George Papandreou, Liang-Chieh Chen, Kevin Murphy, and Alan L Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. In *ICCV*, 2015. [1](#)
- [5] Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Constrained convolutional neural networks for weakly supervised segmentation. In *ICCV*, 2015. [1](#)
- [6] Pedro O Pinheiro and Ronan Collobert. From image-level to pixel-level labeling with convolutional networks. In *CVPR*, 2015. [1](#)
- [7] Wataru Shimoda and K. Yanai. Self-supervised difference detection for weakly-supervised semantic segmentation. In *ICCV*, 2019. [1](#)