
Few-shot Learning with Noisy Labels
— Supplemental Material —

Kevin J Liang1 Samrudhdhi B. Rangrej2 Vladan Petrovic1 Tal Hassner1
1Facebook AI Research 2McGill University

kevinjliang@fb.com

We include supplemental material for our work here.
Sec. A shows the mislabeled samples in the 5-way 5-shot
support set in Fig. 1 of the main paper, as well as two more
example noisy support sets. We discuss computational com-
plexity considerations for iteratively solving for the median
in Sec. B. In Sec. C, we investigate noisy few-shot perfor-
mance for different numbers of shots from the 5-shot set-
ting considered in Sec. 6.2 of the main paper. Sec. D con-
tains descriptions and additional implementation details of
the baselines that we compare against. We perform further
ablation studies beyond Sec. 6.4 of the main paper, inves-
tigating feature extractors, hyperparameter settings, and ar-
chitectural design choices of TraNFS in Sec. E.

A. Noisy support set examples
Noisy few-shot learning is a challenging problem. Even

before adding noise, there can be significant variation
within a class, largely due to the manner in which the Im-
ageNet [2] dataset (from which MiniImageNet [10] and
TieredImageNet [7] are derived) was constructed. Some im-
ages in the clean version of ImageNet are mislabeled due to
human error, but even among the correctly labeled objects,
there are non-canonical views, images with multiple objects
(possibly from multiple ImageNet classes), and classes that
are close to synonymous. We provide several examples of
noisy support sets from MiniImageNet with 40% symmetric
label swap noise [9] in Fig. 1, with the clean and noisy sam-
ples framed in green and red, respectively. While humans
are generally able to separate the noisy samples from the
clean samples with some scrutiny, this is in large part due
to prior conceptual understandings of the classes depicted.
Few-shot models presented with support sets such as those
in Fig. 1 are tasked with learning how to distinguish the de-
picted classes without having previously seen these classes,
a much more difficult problem.

B. A Note On Median Complexity
As discussed in Sec. 4.1 in the main paper, median com-

putation has to be performed iteratively since no closed

Table 1. Few-shot performance with symmetric label swap noise
on 5-way 3-shot MiniImageNet [10].

Model \ Noise Proportion 0% 33.3%

Oracle 62.60 ± 0.17 56.89 ± 0.18
Nearest k = 1 52.98 ± 0.18 39.92 ± 0.18
Nearest k = 3 50.59 ± 0.18 38.76 ± 0.16
Nearest k = 5 50.20 ± 0.17 40.05 ± 0.16

Linear Classifier 61.54 ± 0.17 46.06 ± 0.17
Matching Networks [10] 57.86 ± 0.18 44.92 ± 0.18

MAML [3] 59.79 ± 0.20 40.41 ± 0.17
Vanilla ProtoNet [8] 62.54 ± 0.18 48.78 ± 0.19

RNNP [6] 62.57 ± 0.17 48.76 ± 0.19
Median 62.60 ± 0.17 50.40 ± 0.19

Absolute T = 10.0 61.77 ± 0.17 50.93 ± 0.19
Absolute T = 25.0 62.54 ± 0.17 50.84 ± 0.19
Absolute T = 50.0 62.69 ± 0.17 50.06 ± 0.19
Euclidean T = 10.0 62.58 ± 0.17 50.83 ± 0.19
Euclidean T = 25.0 62.62 ± 0.18 50.06 ± 0.19
Euclidean T = 50.0 62.62 ± 0.17 49.51 ± 0.19

Cosine T = 0.2 62.75 ± 0.17 49.63 ± 0.19
Cosine T = 0.5 62.55 ± 0.17 49.15 ± 0.19
Cosine T = 1.0 62.52 ± 0.17 49.20 ± 0.19
Cosine T = 2.0 62.63 ± 0.17 49.05 ± 0.19
Cosine T = 5.0 62.54 ± 0.17 48.96 ± 0.19

TraNFS-2 64.17 ± 0.18 53.35 ± 0.21
TraNFS-3 64.28 ± 0.18 53.84 ± 0.21

form solution exists. We have chosen the 2nd- over 1st-
order optimization as the former provides an optimal step
size at each iteration, speeding up convergence. This choice
may seem costly at first glance, but computational complex-
ity analysis of Eq. (7) shows negligible 2nd-order method
overhead. Each median update iteration takes 4DK+2K−
D flops for gradient computation, K flops for optimal step
calculation (2nd-order method overhead), and 2D flops for
parameter update. We emphasize that this optimization is
done to calculate a median prototype (as opposed to updat-
ing the model weights); D and K are both fairly small.

C. Different number of shots

While the experiments in Sec. 6.2 are conducted with 5
shots, many of our findings on noisy FSL apply to other
numbers of shots as well. We provide additional results be-



(a) (b) (c)

Figure 1. Noisy support set examples. Images with green boxes are clean samples from the original class, while red boxes are mislabeled
samples due to symmetric label swaps. (a) is the support set shown in Fig. 1 of the main paper.

Table 2. Few-shot performance with outlier noise on 5-way 3-shot
MiniImageNet [10].

Model \ Noise Proportion 0% 33.3%

Oracle 62.60 ± 0.17 56.89 ± 0.18
Nearest k = 1 53.07 ± 0.18 44.66 ± 0.18
Nearest k = 3 50.40 ± 0.18 41.59 ± 0.17
Nearest k = 5 50.24 ± 0.17 42.26 ± 0.17

Linear Classifier 61.58 ± 0.17 51.21 ± 0.18
Matching Networks [10] 57.82 ± 0.18 48.56 ± 0.19

MAML [3] 59.76 ± 0.19 47.08 ± 0.19
Vanilla ProtoNet [8] 62.43 ± 0.17 52.78 ± 0.19

RNNP [6] 62.55 ± 0.17 52.88 ± 0.19
Median 62.53 ± 0.17 53.82 ± 0.19

Absolute T = 10.0 61.54 ± 0.17 53.76 ± 0.19
Absolute T = 25.0 62.47 ± 0.17 54.07 ± 0.19
Absolute T = 50.0 62.69 ± 0.17 53.73 ± 0.19
Euclidean T = 10.0 62.56 ± 0.18 54.10 ± 0.19
Euclidean T = 25.0 62.57 ± 0.17 53.72 ± 0.18
Euclidean T = 50.0 62.76 ± 0.17 53.55 ± 0.19

Cosine T = 0.2 62.58 ± 0.17 53.46 ± 0.19
Cosine T = 0.5 62.50 ± 0.17 53.03 ± 0.19
Cosine T = 1.0 62.50 ± 0.17 52.84 ± 0.19
Cosine T = 2.0 62.72 ± 0.17 53.16 ± 0.19
Cosine T = 5.0 62.63 ± 0.18 53.19 ± 0.19

TraNFS-2 63.63 ± 0.18 54.75 ± 0.20
TraNFS-3 63.61 ± 0.18 54.72 ± 0.20

low for MiniImageNet [10] with K = {3, 10} shots.

C.1. 3-shot MiniImageNet

We show 5-way 3-shot performance on MiniImageNet
with symmetric label swap (Table 1) and outlier (Table 2)
noise. Note that we do not show results for paired label
swap noise, as at 33.3% noise, paired label noise is identical
to symmetric, and at 66.7%, the clean class is dominated by
the noisy class.

We observe similar trends in the 3-shot setting as in the
5-way 5-shot experiments reported in Tables 1, 2, and 3 of
the main paper. The baseline methods suffer dramatically

from replacing a clean sample in the support set with a sin-
gle noisy sample, with ProtoNet [8] suffering almost a 14%
drop in accuracy in the 33.3% symmetric label swap noise
setting, as compared to the 5.71% drop in accuracy from
removing a shot. Our proposed ProtoNet variants at var-
ious temperatures T all outperform vanilla ProtoNet. On
the other hand, our TraNFS surpasses vanilla ProtoNet by
5.06% and impressively is only 3.05% short of the Oracle,
despite not having knowledge of the noisy samples within
the support set.

C.2. 10-shot MiniImageNet

We show 5-way 10-shot performance on MiniImageNet
with symmetric label swap (Table 3), paired label swap (Ta-
ble 4), and outlier (Table 5) noise. Note that we only show
20%, 30%, and 40% noise proportion for paired label swap
noise, as at 0% and 10%, paired label swapping is no differ-
ent from symmetric swapping (Table 3) for 10 shots, and at
50% and above the noisy class would have either a share of
or the outright majority.

Our proposed TraNFS shines with 10-shot tasks as well.
As in the 5-shot case, our method does especially well in
moderate to high noise levels. In particular, we observe over
5% absolute improvement from TraNFS over vanilla Pro-
toNet at 40% and 50% symmetric label swap noise and an
impressive 6.21% improvement for 40% paired label swap
noise. TraNFS is also the best method for rejecting outlier
noise as well.

D. Method descriptions
Fig. 2 shows a visual comparison of some of the base-

lines we compare against. We discuss implementation de-
tails below.
Oracle. When noise appears in a support set, accuracy of
the few-shot model is reduced for two reasons: (1) misla-



Table 3. Few-shot performance with symmetric label swap noise on 5-way 10-shot MiniImageNet [10].

Model \ Noise Proportion 0% 10% 20% 30% 40% 50% 60% 70%

Oracle 73.62 ± 0.14 72.78 ± 0.15 71.78 ± 0.15 70.82 ± 0.15 69.27 ± 0.16 64.70 ± 0.17 60.59 ± 0.17 53.88 ± 0.18
Nearest k = 1 53.02 ± 0.19 49.04 ± 0.18 45.02 ± 0.18 40.87 ± 0.18 37.28 ± 0.17 33.13 ± 0.17 29.07 ± 0.16 24.64 ± 0.15
Nearest k = 3 53.79 ± 0.19 50.84 ± 0.18 47.24 ± 0.18 43.21 ± 0.17 38.58 ± 0.17 33.72 ± 0.16 29.00 ± 0.15 24.24 ± 0.13
Nearest k = 5 55.03 ± 0.20 53.08 ± 0.19 50.29 ± 0.19 46.50 ± 0.18 41.97 ± 0.17 36.51 ± 0.16 30.75 ± 0.15 25.26 ± 0.14

Linear Classifier 72.08 ± 0.14 68.56 ± 0.15 64.17 ± 0.16 58.90 ± 0.16 52.68 ± 0.16 45.43 ± 0.16 37.20 ± 0.15 29.18 ± 0.14
Matching Networks [10] 62.63 ± 0.19 60.81 ± 0.19 58.21 ± 0.19 54.79 ± 0.19 50.05 ± 0.19 43.47 ± 0.18 35.90 ± 0.17 28.70 ± 0.15

MAML [3] 64.37 ± 0.18 64.42 ± 0.18 55.27 ± 0.18 44.17 ± 0.18 44.10 ± 0.18 44.01 ± 0.18 32.03 ± 0.16 20.04 ± 0.13
Vanilla ProtoNet [8] 73.65 ± 0.14 71.80 ± 0.15 69.19 ± 0.15 65.28 ± 0.16 59.52 ± 0.17 51.42 ± 0.18 41.43 ± 0.18 32.29 ± 0.18

RNNP [6] 73.47 ± 0.14 71.80 ± 0.15 69.37 ± 0.16 65.88 ± 0.17 60.51 ± 0.18 52.25 ± 0.19 41.74 ± 0.19 32.47 ± 0.19
Median 73.54 ± 0.14 71.90 ± 0.15 69.30 ± 0.15 65.59 ± 0.16 59.88 ± 0.17 51.42 ± 0.18 41.13 ± 0.19 31.99 ± 0.18

Absolute T = 10.0 71.12 ± 0.15 69.58 ± 0.16 66.77 ± 0.17 62.27 ± 0.18 54.91 ± 0.20 45.13 ± 0.21 35.05 ± 0.20 28.20 ± 0.18
Absolute T = 25.0 73.10 ± 0.14 71.66 ± 0.15 69.13 ± 0.16 65.15 ± 0.17 58.63 ± 0.18 49.02 ± 0.19 38.40 ± 0.20 30.05 ± 0.18
Absolute T = 50.0 73.49 ± 0.14 71.88 ± 0.15 69.42 ± 0.16 65.52 ± 0.16 59.54 ± 0.18 50.65 ± 0.19 40.04 ± 0.19 31.34 ± 0.18
Euclidean T = 10.0 73.11 ± 0.15 71.60 ± 0.15 69.28 ± 0.16 65.57 ± 0.17 59.59 ± 0.18 50.45 ± 0.19 39.73 ± 0.19 30.88 ± 0.18
Euclidean T = 25.0 73.57 ± 0.14 71.98 ± 0.15 69.50 ± 0.16 65.78 ± 0.16 60.02 ± 0.18 51.59 ± 0.18 40.96 ± 0.19 31.98 ± 0.18
Euclidean T = 50.0 73.64 ± 0.14 71.96 ± 0.15 69.36 ± 0.16 65.68 ± 0.16 59.95 ± 0.17 51.58 ± 0.18 41.30 ± 0.19 32.18 ± 0.18

Cosine T = 0.2 73.62 ± 0.14 71.94 ± 0.15 69.44 ± 0.15 65.65 ± 0.16 59.91 ± 0.17 51.49 ± 0.18 41.14 ± 0.19 32.13 ± 0.18
Cosine T = 0.5 73.60 ± 0.14 71.85 ± 0.15 69.26 ± 0.15 65.46 ± 0.16 59.64 ± 0.17 51.50 ± 0.18 41.23 ± 0.19 32.18 ± 0.18
Cosine T = 1.0 73.57 ± 0.14 71.78 ± 0.15 69.13 ± 0.15 65.36 ± 0.16 59.62 ± 0.17 51.56 ± 0.18 41.44 ± 0.18 32.24 ± 0.18
Cosine T = 2.0 73.65 ± 0.14 71.83 ± 0.15 69.08 ± 0.16 65.25 ± 0.16 59.58 ± 0.17 51.26 ± 0.18 41.36 ± 0.18 32.10 ± 0.18
Cosine T = 5.0 73.55 ± 0.14 71.73 ± 0.15 69.06 ± 0.15 65.19 ± 0.16 59.42 ± 0.17 51.38 ± 0.18 41.31 ± 0.19 32.19 ± 0.18

TraNFS-2 72.80 ± 0.15 71.86 ± 0.15 70.54 ± 0.16 68.25 ± 0.17 64.29 ± 0.19 57.04 ± 0.21 45.84 ± 0.24 35.09 ± 0.23
TraNFS-3 73.17 ± 0.15 72.14 ± 0.15 70.71 ± 0.16 68.48 ± 0.17 64.59 ± 0.18 57.45 ± 0.21 45.80 ± 0.24 35.12 ± 0.23

Table 4. Few-shot performance with paired label swap noise on
5-way 10-shot MiniImageNet [10].

Model \ Noise Proportion 20% 30% 40%

Oracle 71.78 ± 0.15 70.82 ± 0.15 69.27 ± 0.16
Nearest k = 1 44.85 ± 0.18 40.80 ± 0.18 36.58 ± 0.17
Nearest k = 3 46.96 ± 0.18 42.31 ± 0.17 37.32 ± 0.16
Nearest k = 5 49.88 ± 0.18 45.21 ± 0.17 39.47 ± 0.17

Linear Classifier 63.54 ± 0.16 56.70 ± 0.16 47.85 ± 0.16
Matching Networks [10] 57.74 ± 0.19 52.80 ± 0.18 45.37 ± 0.17

MAML [3] 55.05 ± 0.18 41.95 ± 0.18 41.83 ± 0.18
Vanilla ProtoNet [8] 68.34 ± 0.16 62.59 ± 0.16 52.73 ± 0.17

RNNP [6] 68.89 ± 0.16 63.86 ± 0.17 54.06 ± 0.18
Median 69.04 ± 0.15 63.50 ± 0.16 53.61 ± 0.17

Absolute T = 50.0 69.07 ± 0.16 63.62 ± 0.17 53.78 ± 0.18
Absolute T = 25.0 69.00 ± 0.16 63.75 ± 0.17 53.88 ± 0.18
Absolute T = 10.0 66.94 ± 0.17 61.82 ± 0.18 52.28 ± 0.20
Euclidean T = 50.0 68.86 ± 0.16 63.20 ± 0.17 53.24 ± 0.17
Euclidean T = 25.0 69.12 ± 0.16 63.48 ± 0.17 53.58 ± 0.17
Euclidean T = 10.0 68.91 ± 0.16 63.73 ± 0.17 53.81 ± 0.18

Cosine T = 5.0 68.50 ± 0.15 62.72 ± 0.16 52.76 ± 0.17
Cosine T = 2.0 68.42 ± 0.15 62.63 ± 0.16 52.87 ± 0.17
Cosine T = 1.0 68.48 ± 0.16 62.59 ± 0.17 52.86 ± 0.17
Cosine T = 0.5 68.58 ± 0.15 62.76 ± 0.16 52.90 ± 0.17
Cosine T = 0.2 68.82 ± 0.16 63.14 ± 0.17 53.27 ± 0.17

TraNFS-2 70.13 ± 0.16 66.20 ± 0.17 56.97 ± 0.20
TraNFS-3 70.38 ± 0.16 67.03 ± 0.18 58.94 ± 0.21

beled samples provide the model with misleading informa-
tion about the class, and (2) clean samples that would have
otherwise been informative were removed from the support
set. FSL performance can be heavily influenced by the num-
ber of shots, especially in the low-data regime, so we find
it important to separate out the aforementioned two sources
of performance degradation. For this purpose, we include

in our results tables an Oracle model consisting of a vanilla
ProtoNet [8] with prototypes produced from only the cor-
rectly labeled samples in the support set. Note that the Or-
acle requires knowing the identities of the noisy samples,
which cannot be reasonably expected in many real-world
settings and is thus not a fair comparison with the other
methods, but we include it to give a sense of constructive
information content still available in the support set after
noise corruption.
Nearest Neighbors. In the context of FSL, nearest neigh-
bors (Fig. 2a) is a simple, non-parametric classification
technique which classifies query samples based on the la-
bels of the k closest support samples in embedding space.
Whichever class has the plurality among the k nearest
neighbor support samples is the prediction, with ties bro-
ken uniformly at random among the tied classes. We report
results for k ∈ {1, 3, 5}.
Linear Classifier. We train a single fully connected
layer RD → RN on top of frozen convolutional features
(Fig. 2c). For each episode, the parameters of the fully
connected layer are learned with the AdamW [5] optimizer
with weight decay 0.01, trained for 100 steps. Note that
this approach resembles the Baseline method [1], with the
primary difference being that we use the ProtoNet objec-
tive and episodic meta-training to learn the feature extractor
F , as opposed to the softmax cross entropy loss with batch
learning on the base classes.
Matching Networks [10]. Matching networks (Fig. 2b) use
an attention mechanism to compare the embedded query



Table 5. Few-shot performance with outlier noise on 5-way 10-shot MiniImageNet [10].

Model \ Noise Proportion 0% 10% 20% 30% 40% 50% 60% 70%

Oracle 73.62 ± 0.14 72.78 ± 0.15 71.78 ± 0.15 70.82 ± 0.15 69.27 ± 0.16 64.70 ± 0.17 60.59 ± 0.17 53.88 ± 0.18
Nearest k = 1 53.14 ± 0.19 50.61 ± 0.19 48.25 ± 0.18 45.62 ± 0.18 42.91 ± 0.18 39.99 ± 0.17 37.06 ± 0.17 33.66 ± 0.17
Nearest k = 3 53.55 ± 0.19 51.49 ± 0.18 49.16 ± 0.18 46.50 ± 0.18 43.69 ± 0.17 40.63 ± 0.17 37.07 ± 0.16 33.15 ± 0.15
Nearest k = 5 54.81 ± 0.20 53.31 ± 0.19 51.46 ± 0.19 49.18 ± 0.18 46.35 ± 0.18 43.13 ± 0.17 39.32 ± 0.16 35.05 ± 0.16

Linear Classifier 71.90 ± 0.15 69.62 ± 0.15 66.94 ± 0.16 63.70 ± 0.16 59.86 ± 0.16 55.31 ± 0.17 49.84 ± 0.17 43.42 ± 0.17
Matching Networks [10] 62.68 ± 0.19 61.37 ± 0.19 59.58 ± 0.19 57.52 ± 0.19 54.58 ± 0.19 51.12 ± 0.19 46.48 ± 0.19 40.68 ± 0.18

MAML [3] 64.30 ± 0.18 64.43 ± 0.18 58.82 ± 0.18 51.30 ± 0.19 51.37 ± 0.19 51.36 ± 0.19 42.05 ± 0.19 30.89 ± 0.18
Vanilla ProtoNet [8] 73.67 ± 0.14 72.27 ± 0.15 70.55 ± 0.15 68.08 ± 0.16 64.93 ± 0.16 60.66 ± 0.17 55.28 ± 0.18 47.94 ± 0.19

RNNP [6] 73.35 ± 0.14 71.92 ± 0.15 70.16 ± 0.15 67.97 ± 0.16 64.90 ± 0.17 60.81 ± 0.17 55.34 ± 0.18 48.07 ± 0.19
Median 73.69 ± 0.14 72.50 ± 0.15 70.78 ± 0.15 68.47 ± 0.15 65.26 ± 0.16 61.07 ± 0.17 55.46 ± 0.18 47.92 ± 0.19

Absolute T = 50.0 73.56 ± 0.14 72.44 ± 0.15 70.82 ± 0.15 68.60 ± 0.16 65.48 ± 0.16 61.33 ± 0.17 55.62 ± 0.18 48.19 ± 0.19
Absolute T = 25.0 73.26 ± 0.14 72.14 ± 0.15 70.65 ± 0.15 68.57 ± 0.16 65.53 ± 0.17 61.29 ± 0.17 55.45 ± 0.18 47.89 ± 0.19
Absolute T = 10.0 71.10 ± 0.15 69.96 ± 0.15 68.48 ± 0.16 66.29 ± 0.17 63.36 ± 0.17 58.83 ± 0.18 52.58 ± 0.19 44.80 ± 0.20
Euclidean T = 50.0 73.62 ± 0.14 72.39 ± 0.15 70.59 ± 0.15 68.28 ± 0.16 65.21 ± 0.16 60.94 ± 0.17 55.37 ± 0.18 48.04 ± 0.19
Euclidean T = 25.0 73.58 ± 0.14 72.36 ± 0.15 70.70 ± 0.15 68.40 ± 0.16 65.33 ± 0.16 61.08 ± 0.17 55.15 ± 0.18 47.79 ± 0.19
Euclidean T = 10.0 73.19 ± 0.15 72.03 ± 0.15 70.48 ± 0.16 68.21 ± 0.16 65.00 ± 0.17 60.50 ± 0.18 54.51 ± 0.19 46.58 ± 0.20

Cosine T = 5.0 73.57 ± 0.14 72.25 ± 0.15 70.44 ± 0.15 67.97 ± 0.16 64.77 ± 0.16 60.61 ± 0.17 55.14 ± 0.18 47.94 ± 0.19
Cosine T = 2.0 73.63 ± 0.14 72.28 ± 0.14 70.47 ± 0.15 68.10 ± 0.16 64.79 ± 0.16 60.60 ± 0.17 55.02 ± 0.18 48.03 ± 0.19
Cosine T = 1.0 73.46 ± 0.14 72.19 ± 0.15 70.33 ± 0.15 67.97 ± 0.16 64.80 ± 0.16 60.59 ± 0.17 55.09 ± 0.18 47.88 ± 0.19
Cosine T = 0.5 73.64 ± 0.14 72.30 ± 0.15 70.53 ± 0.15 68.13 ± 0.16 65.07 ± 0.16 60.73 ± 0.17 55.16 ± 0.18 48.13 ± 0.19
Cosine T = 0.2 73.55 ± 0.14 72.40 ± 0.15 70.61 ± 0.15 68.37 ± 0.16 65.26 ± 0.16 61.00 ± 0.17 55.34 ± 0.18 47.97 ± 0.19

TraNFS-2 72.43 ± 0.15 71.54 ± 0.16 70.24 ± 0.16 68.56 ± 0.17 65.93 ± 0.18 62.21 ± 0.20 56.98 ± 0.21 49.41 ± 0.22
TraNFS-3 72.91 ± 0.15 72.12 ± 0.15 70.92 ± 0.16 69.47 ± 0.16 67.14 ± 0.17 63.60 ± 0.19 58.68 ± 0.20 50.66 ± 0.22

sample with embeddings of each of the support set samples,
with the prediction being a linear combination of the sup-
port set labels based on the result of this attention. While
this mechanism is trainable in a meta-learning setup, we
found that we achieved better results than those reported
in the literature by using a frozen convolutional feature ex-
tractor trained with the ProtoNet loss.
MAML [3]. Model-Agnostic Meta-Learning (MAML)
seeks to learn a good initialization so that the model can be
quickly adapted to new tasks, with this initialization learned
through second-order gradients. As such, unlike the other
methods we compare against, we do not use the weights
of the same frozen 4-layer convolutional feature extractor
for MAML. Instead, we use the Adam optimizer to train
MAML with a meta-learning rate of 3 × 10−3 and inner
loop learning rate of 1×10−2, using 5 adaptation steps dur-
ing meta-training and 10 steps during meta-test. We use the
same random horizontal flips, resized crops, and color jit-
ters for data augmentations as the rest of our experiments.
ProtoNet [8]. ProtoNet (Fig. 2d) was introduced in Sec. 3
of the main paper. We refer to the version of ProtoNet pro-
posed by Snell et al. in [8] (using the mean of the support
embeddings) as Vanilla ProtoNet to distinguish it from the
median and similarity weighted variants of ProtoNet that we
propose in Sec. 4 of the main paper.
Baseline++ [1]. Baseline++ was proposed as a simple al-
ternative to recent few-shot methods. Rather than requir-
ing relatively complex bi-level meta-training, [1] proposed
simply pre-training a feature extractor with a standard su-

pervised cross-entropy loss, freezing the feature extractor’s
weights, and then fine-tuning a one-layer classifier just on
top of the few examples in the novel class’s support set fea-
tures. In particular, the Baseline++ method uses cosine sim-
ilarity and a softmax for the classifier. Such an approach
has been shown to be surprisingly competitive with popular
few-shot approaches. We implement this cosine similarity
classifier in our framework, with the primary difference be-
ing that we use a feature extractor trained with the ProtoNet
loss instead of a cross-entropy loss, in order to compare the
classifier design on even terms. Note that [1] also proposed
a simpler approach using a standard linear layer instead of
cosine distance, which they referred to as Baseline; other
than the training objective of the fixed feature extractor, the
Baseline method is equivalent to our Linear Classifier base-
line.

NegMargin [4]. Taking insights from the metric learning
literature, [4] suggests that discriminability shortcomings of
the softmax loss can be mitigated by learning with a margin.
Surprisingly, NegMargin found that positive margins under-
perform in open-set few-shot classification scenarios, while
negative margins can lead to significant improvements in
performance due to improved transferability. To perform
few-shot classification, NegMargin takes a similar approach
to [1]–first pre-training and then freezing the feature extrac-
tor, followed by fine-tuning of a classifier for the novel sup-
port set–with the primary difference being the substitution
of the standard softmax with the negative margin softmax
loss during pre-training. As such, unlike the other methods



(a) Nearest Neighbors
(b) Matching Networks

(c) Linear Classifier

(d) Prototypical Networks

Figure 2. Visual overview of several of the few-shot method archetypes considered.

Table 6. Temperature sweep for our ProtoNet variants: symmetric label swap noise. 5-way 5-shot Acc. ± 95% CI on MiniIma-
geNet [10], TieredImageNet [7]. Best viewed in color.

Model \ Noise Proportion 0% 20% 40% 60%

Absolute T = 50.0 68.18 ± 0.16 71.24 ± 0.18 62.98 ± 0.17 66.56 ± 0.20 51.68 ± 0.19 54.97 ± 0.21 39.24 ± 0.20 41.59 ± 0.21
Absolute T = 25.0 68.24 ± 0.16 71.27 ± 0.18 63.46 ± 0.17 66.87 ± 0.20 52.06 ± 0.20 55.26 ± 0.22 39.78 ± 0.20 42.54 ± 0.22
Absolute T = 10.0 67.15 ± 0.17 70.15 ± 0.19 62.96 ± 0.18 66.10 ± 0.20 52.08 ± 0.20 55.08 ± 0.23 39.92 ± 0.21 42.49 ± 0.23
Absolute T = 5.0 63.89 ± 0.17 66.56 ± 0.19 59.63 ± 0.18 62.67 ± 0.21 51.30 ± 0.20 53.83 ± 0.22 37.99 ± 0.21 39.91 ± 0.23
Absolute T = 1.0 50.26 ± 0.20 51.39 ± 0.22 47.04 ± 0.20 48.40 ± 0.23 40.40 ± 0.21 41.45 ± 0.23 31.03 ± 0.20 31.75 ± 0.21

Euclidean T = 50.0 68.31 ± 0.16 71.31 ± 0.18 62.78 ± 0.17 66.36 ± 0.19 51.86 ± 0.19 55.19 ± 0.21 38.90 ± 0.20 41.19 ± 0.21
Euclidean T = 25.0 68.32 ± 0.16 71.48 ± 0.18 63.02 ± 0.17 66.69 ± 0.19 52.09 ± 0.19 55.62 ± 0.21 39.33 ± 0.20 41.75 ± 0.21
Euclidean T = 10.0 68.23 ± 0.16 71.18 ± 0.19 63.46 ± 0.17 67.04 ± 0.20 52.24 ± 0.20 55.78 ± 0.22 39.87 ± 0.20 42.53 ± 0.22
Euclidean T = 5.0 67.53 ± 0.16 70.54 ± 0.18 63.00 ± 0.18 66.56 ± 0.20 53.79 ± 0.20 57.37 ± 0.22 39.63 ± 0.21 42.31 ± 0.22
Euclidean T = 1.0 56.75 ± 0.19 59.17 ± 0.21 52.31 ± 0.19 54.82 ± 0.22 44.06 ± 0.20 46.09 ± 0.23 32.88 ± 0.20 33.99 ± 0.21
Cosine T = 10.0 68.24 ± 0.16 71.27 ± 0.18 62.47 ± 0.17 66.16 ± 0.19 51.41 ± 0.19 54.96 ± 0.21 38.38 ± 0.19 40.74 ± 0.21
Cosine T = 5.0 68.31 ± 0.16 71.16 ± 0.18 62.51 ± 0.17 65.99 ± 0.20 51.51 ± 0.19 54.78 ± 0.21 38.55 ± 0.19 40.81 ± 0.21
Cosine T = 2.0 68.28 ± 0.16 71.22 ± 0.18 62.57 ± 0.17 66.24 ± 0.19 51.59 ± 0.19 55.06 ± 0.21 38.71 ± 0.19 40.99 ± 0.21
Cosine T = 1.0 68.21 ± 0.16 71.21 ± 0.18 62.70 ± 0.17 66.47 ± 0.19 51.72 ± 0.19 55.27 ± 0.21 38.92 ± 0.19 41.32 ± 0.21
Cosine T = 0.5 68.42 ± 0.16 71.31 ± 0.18 63.13 ± 0.18 66.81 ± 0.20 52.08 ± 0.19 55.60 ± 0.22 39.36 ± 0.20 42.14 ± 0.22
Cosine T = 0.2 68.20 ± 0.16 70.59 ± 0.18 63.46 ± 0.17 66.62 ± 0.20 52.42 ± 0.20 55.78 ± 0.22 39.90 ± 0.20 42.56 ± 0.22
Cosine T = 0.1 67.52 ± 0.16 69.30 ± 0.19 63.07 ± 0.18 65.25 ± 0.20 52.22 ± 0.20 54.24 ± 0.23 39.85 ± 0.21 41.79 ± 0.23

we compare against, we do not use the weights of the same
frozen 4-layer convolutional feature extractor for NegMar-
gin. We use the official NegMargin codebase,1 modifying
their code to inject artificial noisy labels into support sets
during meta-test evaluation.

RNNP [6]. Robust Nearest Neighbor Prototype (RNNP)
creates hybrid examples by interpolating between samples
within each support set, somewhat similarly to mixup. Us-

1https://github.com/bl0/negative- margin.few-
shot

ing ProtoNet prototypes of the original support embeddings
as initialization for the class centers, k-means is then used to
refine the prototypes in an unsupervised manner. We repro-
duce RNNP, using the suggested K − 1 hybrids per support
sample and mixing ratio of 0.8 when producing hybrids.

E. Additional ablation studies

Feature extractor training objective. We consider the
performance of few-shot learning methods within the con-
text of support set noise primarily with a frozen feature



Table 7. Temperature sweep for our ProtoNet variants: outlier noise. 5-way 5-shot Acc. ± 95% CI on MiniImageNet [10], TieredIm-
ageNet [7]. Best viewed in color.

Model \ Noise Proportion 0% 20% 40% 60%

Absolute T = 50.0 68.41 ± 0.16 71.42 ± 0.19 64.62 ± 0.17 67.96 ± 0.19 58.08 ± 0.19 61.68 ± 0.21 47.33 ± 0.20 50.71 ± 0.22
Absolute T = 25.0 68.13 ± 0.16 71.17 ± 0.18 64.69 ± 0.17 68.00 ± 0.19 58.30 ± 0.18 61.98 ± 0.21 47.39 ± 0.20 50.59 ± 0.22
Absolute T = 10.0 67.18 ± 0.16 70.10 ± 0.19 64.14 ± 0.17 67.29 ± 0.20 58.12 ± 0.19 61.65 ± 0.21 47.02 ± 0.21 49.68 ± 0.22
Absolute T = 5.0 63.97 ± 0.17 66.78 ± 0.19 60.96 ± 0.18 63.88 ± 0.20 55.24 ± 0.19 58.17 ± 0.21 44.28 ± 0.21 46.50 ± 0.22
Absolute T = 1.0 50.02 ± 0.19 51.77 ± 0.22 47.71 ± 0.20 49.01 ± 0.22 42.90 ± 0.20 44.45 ± 0.23 34.52 ± 0.20 35.08 ± 0.21

Euclidean T = 50.0 68.31 ± 0.16 71.14 ± 0.18 64.25 ± 0.17 67.53 ± 0.19 57.43 ± 0.18 60.95 ± 0.21 47.06 ± 0.20 50.34 ± 0.21
Euclidean T = 25.0 68.51 ± 0.16 71.28 ± 0.18 64.57 ± 0.17 67.89 ± 0.19 58.01 ± 0.18 61.61 ± 0.20 47.25 ± 0.20 50.49 ± 0.21
Euclidean T = 10.0 68.19 ± 0.16 71.20 ± 0.18 64.55 ± 0.17 68.02 ± 0.19 58.17 ± 0.19 62.00 ± 0.21 47.24 ± 0.20 50.86 ± 0.22
Euclidean T = 5.0 67.58 ± 0.16 70.45 ± 0.18 64.25 ± 0.17 67.55 ± 0.19 57.82 ± 0.19 61.69 ± 0.21 46.34 ± 0.20 50.21 ± 0.22
Euclidean T = 1.0 56.94 ± 0.18 59.04 ± 0.21 53.59 ± 0.19 55.57 ± 0.22 47.23 ± 0.20 49.63 ± 0.22 37.32 ± 0.20 39.37 ± 0.22
Cosine T = 10.0 68.41 ± 0.16 71.20 ± 0.18 64.19 ± 0.17 67.48 ± 0.19 57.33 ± 0.18 60.87 ± 0.21 47.02 ± 0.20 50.12 ± 0.21
Cosine T = 5.0 68.29 ± 0.16 71.28 ± 0.19 64.04 ± 0.17 67.46 ± 0.20 57.30 ± 0.18 61.10 ± 0.21 47.08 ± 0.20 50.27 ± 0.21
Cosine T = 2.0 68.29 ± 0.16 71.20 ± 0.18 64.13 ± 0.17 67.53 ± 0.19 57.39 ± 0.18 61.07 ± 0.20 46.97 ± 0.20 50.23 ± 0.21
Cosine T = 1.0 68.30 ± 0.16 71.54 ± 0.18 64.23 ± 0.17 68.07 ± 0.19 57.51 ± 0.18 61.82 ± 0.20 46.89 ± 0.20 50.82 ± 0.21
Cosine T = 0.5 68.35 ± 0.16 71.38 ± 0.18 64.51 ± 0.17 68.16 ± 0.19 57.97 ± 0.18 62.13 ± 0.20 47.28 ± 0.20 51.14 ± 0.22
Cosine T = 0.2 68.20 ± 0.16 70.79 ± 0.18 64.78 ± 0.17 67.94 ± 0.19 58.36 ± 0.18 62.37 ± 0.21 47.34 ± 0.20 51.12 ± 0.22
Cosine T = 0.1 67.82 ± 0.16 69.33 ± 0.19 64.49 ± 0.17 66.55 ± 0.20 58.42 ± 0.19 61.21 ± 0.21 46.90 ± 0.21 50.00 ± 0.22

Table 8. Temperature sweep for our ProtoNet variants: paired
label swap noise. 5-way 5-shot Acc. ± 95% CI on MiniIma-
geNet [10], TieredImageNet [7].

Model \ Noise Proportion 40%

Absolute T = 50.0 48.64 ± 0.19 51.83 ± 0.21
Absolute T = 25.0 49.38 ± 0.20 52.40 ± 0.22
Absolute T = 10.0 49.56 ± 0.20 52.54 ± 0.23
Absolute T = 5.0 47.18 ± 0.21 49.42 ± 0.23
Absolute T = 1.0 37.85 ± 0.21 38.47 ± 0.23

Euclidean T = 50.0 48.43 ± 0.19 51.39 ± 0.21
Euclidean T = 25.0 48.67 ± 0.19 51.90 ± 0.21
Euclidean T = 10.0 49.37 ± 0.19 52.55 ± 0.22
Euclidean T = 5.0 49.75 ± 0.20 52.57 ± 0.22
Euclidean T = 1.0 41.30 ± 0.21 42.92 ± 0.22
Cosine T = 10.0 47.75 ± 0.19 50.95 ± 0.21
Cosine T = 5.0 48.03 ± 0.19 51.17 ± 0.21
Cosine T = 2.0 48.03 ± 0.19 51.19 ± 0.21
Cosine T = 1.0 48.53 ± 0.19 51.71 ± 0.21
Cosine T = 0.5 48.90 ± 0.19 52.14 ± 0.21
Cosine T = 0.2 49.40 ± 0.19 52.72 ± 0.22
Cosine T = 0.1 49.71 ± 0.20 51.96 ± 0.23

extractor, as is common practice in many previous few-
shot works [1, 4, 8]. This allows us to isolate our com-
parison to the method, as opposed to the learned fea-
tures. Nonetheless, the learned features have an impact on
model performance. We compare the performance of 4-
layer convolutional neural networks feature extractors [10]
pre-trained with the ProtoNet [8] and NegMargin [4] ob-
jectives, observing {69.66 ± 0.16, 59.88 ± 0.18, 47.53 ±
0.18, 35.67 ± 0.17} on 5-way 5-shot MiniImageNet [10]
with {0%, 20%, 40%, 60%} symmetric label swap noise.
As reported in the literature, NegMargin outperforms the
ProtoNet pre-trained feature extractor when there is no sup-
port set noise during meta-test. On the other hand, NegMar-
gin sees a steeper decline in performance with increasing
noise levels. We thus focus on the ProtoNet pre-trained fea-
ture extractor for our primary experiments. We leave further
investigation into this phenomenon and the performance of

Table 9. Ablation study: Clean Prototype Loss for a 3-layer
TraNFS trained on 5-way 5-shot MiniImageNet [10].

λc 0% 20% 40% 60%

0.0 63.77 ± 0.18 60.67 ± 0.19 53.14 ± 0.22 39.75 ± 0.23
0.1 65.68 ± 0.18 61.94 ± 0.19 53.45 ± 0.22 39.20 ± 0.24
0.5 68.11 ± 0.17 64.56 ± 0.18 56.47 ± 0.21 41.94 ± 0.24
1.0 68.80 ± 0.16 65.10 ± 0.18 57.26 ± 0.21 42.82 ± 0.24
5.0 68.53 ± 0.17 65.08 ± 0.18 56.65 ± 0.21 42.60 ± 0.24

10.0 68.76 ± 0.17 64.87 ± 0.18 56.76 ± 0.21 42.17 ± 0.24

Table 10. Ablation study: Binary Classification Loss for a 3-
layer TraNFS trained on 5-way 5-shot MiniImageNet [10].

λb 0% 20% 40% 60%

0.0 68.74 ± 0.17 64.97 ± 0.18 56.29 ± 0.21 41.88 ± 0.23
0.1 68.73 ± 0.17 65.04 ± 0.18 56.57 ± 0.21 42.23 ± 0.24
0.5 68.53 ± 0.17 65.08 ± 0.18 56.65 ± 0.21 42.60 ± 0.24
1.0 68.74 ± 0.17 64.81 ± 0.18 56.44 ± 0.21 42.26 ± 0.24
5.0 68.75 ± 0.17 65.06 ± 0.18 56.71 ± 0.21 42.42 ± 0.24

other feature extractor pre-training objectives on noisy few-
shot learning to future work.

Proposed ProtoNet variants: Temperature settings. As
explained in Sec. 4.2 of the main paper, the temperature
T controls the diffuseness of the softmax for similarity
weighted prototypes. The setting of T results in a trade-
off between emphasizing more shots versus noise rejection
capability and thus can have an impact on performance. We
show performance of similarity weighted prototypes with
absolute distance, squared euclidean distance, and cosine
similarity measure on MiniImageNet and TieredImageNet
at varying noise levels with symmetric label swap noise,
paired label swap noise, and outlier noise in Tables 6, 8, and
7, respectively. Note that differences in scale of T for Abso-
lute and Squared Euclidean distances versus cosine similar-
ity is due to their scale: cosine similarity is within [−1, 1],
while the two distances depend on the feature dimensional-



Table 11. Ablation study: choice of embedding for CLS tokens for a 3-layer TraNFS trained on 5-way 5-shot MiniImageNet [10] with
symmetric label swap noise.

CLS Token + POS Token 0% 20% 40% 60%

Prototype + Learnable 68.15 ± 0.16 64.68 ± 0.18 55.04 ± 0.21 41.12 ± 0.22
Learnable + Learnable 67.74 ± 0.17 64.28 ± 0.18 55.46 ± 0.22 41.42 ± 0.24

Random Constant + Random Constant 66.95 ± 0.17 63.34 ± 0.19 54.55 ± 0.22 40.87 ± 0.24
Random Constant + Learnable 68.53 ± 0.17 65.08 ± 0.18 56.65 ± 0.21 42.60 ± 0.24

Figure 3. Sweep of number of transformer layers for 5-way 5-shot
MiniImageNet [10] with symmetric label swap noise.

ity and scale.

TraNFS: Clean prototype loss. We run a hyperparame-
ter sweep for the loss weight term λc, which controls the
weight of the clean prototype loss (Eq. (15)). Results are re-
ported in Table 9. We observe that the clean prototype loss
is indeed helpful for encouraging the transformer to learn
how to reject noisy samples, with a range of values of λc
that work well.

TraNFS: Binary outlier detection. To test the effective-
ness of the binary outlier classifier loss (Eq. (16)), we run a
hyperparameter sweep for the loss weight term λb, report-
ing results in Table 10. We find that binary outlier classifier
is indeed effective, with relatively low sensitivity to the set-
ting of λb. Thus, we set λb to be 0.5 throughout our other
experiments.

TraNFS: CLS and POS token embeddings. There are
several options for the embeddings, corresponding to the
CLS and POS tokens. In Table 11, we meta-train a 3-layer
TraNFS model on 5-shot 5-way MiniImageNet with sym-
metric label swap noise. Each class’s CLS token is set us-
ing one of three options: class prototypes averaged from
the convolutional embeddings, a learnable parameter, and a
random constant.

While we expected the ProtoNet-style prototypes to help
kick-start the transformer’s comparison mechanism, we
were surprised to instead observe that they underperform
other choices for the CLS embeddings. After visualizing
the learning curves, we observe that using prototypes as the
CLS embeddings results in a difficult-to-escape local mini-
mum; we hypothesize this may be the model having mini-

mal incentive to learn anything beyond the provided proto-
type. We also find that learnable CLS embeddings are not
particularly effective: due to the random identity and shuf-
fling of class orders between tasks, each CLS embedding
lacks any semantic meaning beyond corresponding to a par-
ticular POS token’s support samples; thus trying to learn
some discriminitive value does not transfer between tasks
and is ultimately unhelpful. As a result, it appears that a
random constant value for each CLS token is sufficient for
the transformer. For the POS positional encodings, how-
ever, learnable embeddings seem to work best.

TraNFS: Number of layers. Fig. 3 reports results for a
sweep over the number of transformer layers in TraNFS.
Matching intuition, we find that one layer is insufficient for
surpassing the mean (ProtoNet) baseline. Different classes
for each N -way episode mean the CLS embedding do not
generalize across tasks. Without prior information of what
each class c is in an episode, the transformer needs at least
one layer to form such a concept for each position before
comparisons can be made to identify samples that do not
belong. Training with too many layers, however, seems to
occasionally be unstable and tends to produce slightly infe-
rior results, perhaps due to too much overparameterization
and overfitting. We find two or three layers tend to perform
best and thus report most of our results as such.

References
[1] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank

Wang, and Jia-Bin Huang. A closer look at few-shot classi-
fication. arXiv preprint arXiv:1904.04232, 2019.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. Conf. Comput. Vis. Pattern Recog., 2009.

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
Int. Conf. Mach. Learning., 2017.

[4] Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Ming-
sheng Long, and Han Hu. Negative margin matters: Under-
standing margin in few-shot classification. Eur. Conf. Com-
put. Vis., 2020.

[5] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. Int. Conf. Learn. Represent., 2018.

[6] Pratik Mazumder, Pravendra Singh, and Vinay P Nambood-
iri. Rnnp: A robust few-shot learning approach. Proc. Winter
Conf. on Applications of Comput. Vis., 2021.



[7] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. Int. Conf. Learn. Represent., 2018.

[8] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. Adv. Neural Inform. Process.
Syst., 2017.

[9] Brendan Van Rooyen, Aditya Krishna Menon, and Robert C
Williamson. Learning with symmetric label noise:
The importance of being unhinged. arXiv preprint
arXiv:1505.07634, 2015.

[10] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
Adv. Neural Inform. Process. Syst., 2016.


