
Bayesian Invariant Risk Minimization

Yong Lin1* Hanze Dong1* Hao Wang2 Tong Zhang1†

1The Hong Kong University of Science and Technology 2Rutgers University
{ylindf,hdongaj}@ust.hk hw488@cs.rutgers.edu

Abstract

Generalization under distributional shift is an open chal-
lenge for machine learning. Invariant Risk Minimization
(IRM) is a promising framework to tackle this issue by ex-
tracting invariant features. However, despite the potential
and popularity of IRM, recent works have reported nega-
tive results of it on deep models. We argue that the fail-
ure can be primarily attributed to deep models’ tendency
to overfit the data. Specifically, our theoretical analysis
shows that IRM degenerates to empirical risk minimization
(ERM) when overfitting occurs. Our empirical evidence
also provides supports: IRM methods that work well in typ-
ical settings significantly deteriorate even if we slightly en-
large the model size or lessen the training data. To alle-
viate this issue, we propose Bayesian Invariant Risk Min-
imization (BIRM) by introducing Bayesian inference into
the IRM. The key motivation is to estimate the penalty of
IRM based on the posterior distribution of classifiers (as
opposed to a single classifier), which is much less prone to
overfitting. Extensive experimental results on four datasets
demonstrate that BIRM consistently outperforms the exist-
ing IRM baselines significantly.

1. Introduction
The past decade has witnessed a great success of ma-

chine learning technology, boosting the development in
computer vision [25,31], speech recognition [23] and many
other areas [6,19,36,57,58]. However, more in-depth stud-
ies have recently revealed the failure of these models due to
the existence of spurious features or shortcuts [7,14,20,55];
[7] raised an example: models could rely on the background
(pastures or deserts) to distinguish cows and camels. In this
case, background, a spurious feature, is non-invariant and
can change arbitrarily in different domains.

The common foundation of machine learning based on
the i.i.d (independent and identically distributed) assump-
tion does not always hold. The Empirical Risk Minimiza-
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tion (ERM) based models can deteriorate dramatically if the
testing distribution is different from the training one. This
is also known as the out-of-distribution (OOD) generaliza-
tion problem. To relax the i.i.d. assumption, [40] propose
to exploit the “invariance principle” to obtain a better OOD
generalization ability. The invariance principle aims to uti-
lize invariant features that are stable even in the case of dis-
tributional shifts. In the aforementioned cow and camel ex-
ample [7], the shape of the animal is an invariant feature.

Invariant Risk Minimization (IRM) [4] extends the in-
variance principle to neural networks. Specifically, IRM
considers that training data is collected from multiple envi-
ronments (domains) and the correlation of spurious features
with the labels differs in different environments while the
correlation of invariant ones remain stable. IRM regular-
izes neural networks to extract invariant features and discard
spurious features. Hopefully, the model relying on invariant
features only can generalize to unseen environments well.

IRM has gained its popularity for its potential and in-
spires a line of excellent works [1–3,11,32,41,51,56]. IRM
is guaranteed to identify the invariant features given enough
environments with linear model [4, 41]. However, recent
empirical findings in [24, 34] indicate the ineffectiveness of
IRM methods on deep models. We argue that this failure
can be mainly attributed to deep models’ tendency to over-
fit data. From a theoretical perspective, we show that IRM
can ultimately degenerate to ERM when overfitting occurs.
The theoretical findings are verified by extensive empirical
evidence: (1) the model trained by ERM can also minimize
IRM penalty (Section 3.3); (2) IRM-trained model can still
contain spurious features while the IRM penalty vanishes
(Section 5); (3) the IRM methods deteriorate quickly with
an enlarged model or lessened data (Section 5).

Motivated by both the theoretical and empirical findings,
we propose Bayesian Invariant Risk Minimization (BIRM)
as a Bayesian treatment [8] of IRM to substantially alleviate
overfitting, making IRM practical in deep models. Suppose
the prediction model consists of a feature extractor and a
classifier [16, 17]. Given the learned feature representation,
BIRM estimates the posterior distribution of the classifier
(as opposed to a single classifier) for each environment. If



feature representation only contains invariant features, the
estimated posterior in each environment should be almost
the same. Otherwise, the posterior distribution will differ
across environments, and to prevent this from happening,
we then introduce an additional penalty term. Compared
with existing IRM methods, BIRM estimates the invariance
regularization on the posterior distribution of the classifier,
which is less prone to overfitting [8].

Contributions.

• We formally identify overfitting as a crucial reason why
IRM fails in large deep models. We provide empirical
evidence with supporting theoretical analysis.

• We propose a Bayesian formulation of IRM to alleviate
overfitting, along with an efficient algorithm, reducing the
chance of failure for deep IRM models significantly.

• We verify the effectiveness of Bayesian IRM with exten-
sive experiments and show that our method improves the
existing baselines by a large margin.

2. Related Works

Invariant Risk Minimization. IRM is developed in [4]
and became popular recently. Several IRM variants are pro-
posed subsequently: [32, 51] suggests to penalize the vari-
ance of the risks among different environments; [11, 56]
uses neural networks to estimate the violation of invari-
ance; [52] extends this idea further by optimizing the worst
case in a convex hull of classifiers; [2] presents IRM games
by incorporating game theory. [1, 13, 35] consider a more
challenging task where the explicit environmental index is
not available. The theoretical properties of IRM are ana-
lyzed in [3, 12, 27, 41]. [3] studies the sample efficiency of
IRM. [41] investigates IRM with a special non-linear func-
tion. [12] utilizes iterative methods to reduce the number of
environments required by IRM. Despite the popularity of
IRM, some recent works [24,34] find IRM less effective on
deep models. In this paper, we attribute this issue to the
overfitting problem and upgrade IRM by incorporating the
Bayesian principle.

Bayesian Inference. Bayesian inference is an essential
method of statistical inference; it considers the uncertainty
of model parameters [9, 21, 47, 48]. Bayesian inference
has been widely adopted in many machine learning topics,
e.g., uncertainty qualification [22,39,46,48], reinforcement
learning [45], etc. Nonetheless, the approximation of poste-
rior distributions in Bayesian methods can be challenging.
Fortunately, variational inference offers possibility to esti-
mate these posterior distributions efficiently even on large
models [10,15,29,48,53]. Recently, Bayesian inference has

also been introduced to deep learning models to improve ro-
bustness [15,26,29,30,37,38,48,49,53], which also inspire
our method.

3. IRM and Its Overfitting Pitfall
3.1. Invariant Risk Minimization

Preliminaries. Throughout the paper, upper-cased letters,
X and Y , denote random variables; lower-cased letters, x,
y, and w, denote samples and parameters. We assume there
is a set of multiple environments, E , where the data can be
drawn from. During training, we have access to a collec-
tion of environments, Etr ⊂ E ; each environment e ∈ Etr
contains ne samples, denoted as De ≜ {(xe

i , y
e
i )}

ne
i=1. Let

X and Y be the space of X and Y . Our goal is to learn a
function f : X → Y , which predicts Y given X . Here f
consists of a classifier gw(·) and a feature extractor hu(·)
with parameters w and u, respectively. The task of out-of-
distribution generalization aims to find the optimal w and u
which minimizes the loss of the worst environment:

min
w,u

sup
e∈E

Re(w, u), (1)

where Re(w, u) is the negative log likelihood of the data
from e. Formally, we have

Re(w, u) = − ln p(De|w, u) = −
ne∑
i=1

ln p
(
yei |w, hu(xei )

)
,

that is, we aim to learn the optimal w and u to maximize
the likelihood of the worst environment from E . We only
consider the case that w, u are well-specified, such that
Re(w, u) ≥ 0 holds for all w, u.
Invariant Risk Minimization (IRM). IRM [4] aims to
solve the following objective to achieve (1):

min
w,u

∑
e∈Etr

Re(w, u), (2)

s.t. w ∈ argmin
we

Re(we, u),∀e ∈ Etr

IRM defined in Eq. (2) tries to learn a feature representation
by hu(·) that can induce a classifier gw(·) which is simul-
taneously optimal for all training environments. To achieve
this, hu(·) should discard spurious features.
IRMv1. Since Eq. (2) is a challenging bi-level optimization
problem, [4] proposes IRMv1 to approximate the solution
of Eq. (2). IRMv1 is shown as following:

min
w,u

∑
e∈Etr

Re(w, u) + λ∥∇wRe(w, u)∥2 (3)

Besides IRMv1, several other excellent variants of IRM
emerged recently: InvRat [11] estimates the penalty by a



mini-max procedure; REx [32] uses the variance of the
losses in different environments as the penalty. Due to
space constraints, we refer readers to the original works
[2, 4, 11, 13, 51] for detailed description.

3.2. The Overfitting Pitfall

In this section, we theoretically analyze the behavior of
IRM when overfitting occurs. Our results show that the in-
variant constraint of IRM in Eq. (2) holds trivially when the
model memorizes training data. Then IRM will no longer
provide any guarantee on learning invariant features. Our
analysis works under the following assumptions:

Assumption 1 (Finite Sample Size). The number of train-
ing environments and samples are finite: |Etr| < ∞ and
|De| = ne < ∞,∀e ∈ Etr.

Assumption 2 (Sufficient Capacity). The parameters w
and u have sufficient capacity to fit the training data: there
exist w̄ and ū, such that ∀e ∈ Etr,Re(w̄, ū) = 0.

Assumption 1 holds in practice because we have access
to only limited training data from several environments.
Assumption 2 is also consistent with the recent findings
on over-parameterized neural networks; for example, [54]
shows that large neural networks can memorize all training
data even in the presence of strong regularization.

We then proceed by defining the overfitting region.

Definition 1 (Overfitting Region). The overfitting region,
Ω, is the collections of w̄ and ū that satisfies Assumption 2:

Ω := {w̄, ū|Re(w̄, ū) = 0,∀e ∈ Etr}

Our main results go as following:

Proposition 1 (Failure of General IRM). Under Assump-
tion 1 and 2, IRM degenerates to ERM in Ω. Furthermore,
any element in Ω is a solution of IRM defined in Eq. (2).

The full proof of Proposition 1 is deferred to Appendix
A. Proposition 1 shows any model that overfits the train-
ing data is a solution of IRM in Eq. (2), no matter whether
the model uses spurious feature or not. Such model may
behave arbitrarily badly in an unseen test environment. Un-
fortunately, such an overfitting phenomenon is common for
deep neural networks [54].

Connection to Existing Theory. Some theoretical proper-
ties of IRM are analyzed in [3,41]. [3] shows that the sample
complexity of IRM is worse than ERM. [41] shows the diffi-
culty of IRM for non-linear functions. Compared to [3,41],
our theory enjoys the following favorable properties.

• Our theory directly works on the definition of IRM,
which is applicable to various variants of IRM [4, 11,

32, 51, 52, 56]. In contrast, [3, 41] focus on merely one
variant of IRM, IRMv1 [4]. Whether their theories are
applicable to other variants remains under-explored.

• [41] restricts the discussion within some special non-
linear models where the function value jumps on the
boundary of the high-density region. It is hard to verify
whether this case is general enough to cover models
used in practice, i.e. neural networks. In contrast, our
theory works on very mild and verifiable assumptions.

Corollary 1 below implies that it is also difficult for
IRMv1 to learn invariant features in the overfitting case.

Assumption 3 (Differentiability). Re(w, u) is differen-
tiable w.r.t. w, u.

Corollary 1 (Failure of IRMv1). Under assumptions 1,2,3,
∀(w̄, ū) ∈ Ω, the following equality holds:

(w̄, ū) ∈ argmin
w,u

∑
e∈Etr

Re(w, u) + λ∥∇wRe(w, u)∥2

Corollary 1 indicates that any model with zero empir-
ical loss is also an optimal solution of IRMv1. Notably,
this model can still rely on spurious features. The proof of
Corollary 1 is a direct consequence of Proposition 1. We
can also prove similar failure cases of InvRat, REx. Due to
space limitations, we leave them in the Appendix A.

3.3. Empirical Evidence

As we indicated above, IRM will fail if the model mem-
orizes the data. To see this, we visualize the training pro-
cedure of ERM. The penalty of IRM is computed but not
applied to the training objective. At the same time, we also
estimate spurious features are contained in the model by the
non-invariant indicator. Non-invariant indicator is defined
as the percentage of testing samples whose predictions are
vulnerable to the change of spurious features (refer to Ap-
pendix B for detailed explanation). Zero non-invariant in-
dicator means the model completely ignores the spurious
feature while larger one stands for more spurious feature us-
age. Figure 1 shows the IRM penalty and the non-invariant
indicator when we train a ERM model with 3-layer-MLP
on CMNIST [4]. At the beginning, the randomly initial-
ized network does not contain spurious features so the non-
invariant indicator and IRM penalty are at low level. As
the training proceeds, the model learns the spurious features
quickly, increasing of the non-invariant indicator and IRM
penalty. Then as the model learns the invariant feature af-
ter spurious feature [44], the non-invariant indicator drops
and plateaus until the end. The IRM penalty vanishes at
the end as the model begins to memorize the data, however
the non-invariant indicator remains 60% - 70%. In other
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Figure 1. Illustration of training ERM on CMNIST [4] with 3-
layer MLP of different hidden dimensions. The penalty of IRM
(REx) is measured but not applied to the objective. As the training
of ERM proceeds, the IRM penalty decays to zero while the non-
invariant indicator shows the existence of large amount of spurious
feature in the model. The IRM penalty vanishes faster with larger
model and less training data.

words, the model still heavily relies on spurious features
while IRM penalty can not detect it. Figure 1 further shows
that the IRM penalty vanishes even faster as the capacity of
model increases or the dataset size decreases. The empir-
ical phenomenon is consistent with our theoretical results
in Section 3.2: IRM fails when overfitting. More empirical
supports are available in Section 5.

4. Bayesian Invariant Risk Minimization
In Section 3.2, we have shown that overfitting is harm-

ful for IRM. Bayesian inference is a well known method to
alleviate overfitting and it is proven to achieve the optimal
sample complexity rate in the presence of model misspeci-
fication [5,33]. In this section, we propose Bayesian Invari-
ant Risk Minimization (BIRM), a novel variant of IRM, by
incorporating Bayesian principle. Extensive experimental
results in Section 5 show superiority of BIRM.

4.1. Motivation and Formulation

To motivates our method, we set up a diagram in Figure
2 for the invariant learning problem. The node u stands
for the feature extractor hu(·). Let De

u be the data from
environment e that is transformed by the extractor hu(·):
De

u ≜ {hu(xe
i ), y

e}ni=1. Let Du ≜
⋃Etr

e=1 De
u denote the data

collection from the mixture of the training environments.
The nodes we and w in Figure 2 stand for p(we|De

u) and
p(w|Du), the posteriors of the classifiers given the feature
representation, respectively. We add zebra stripes in Figure
2 to distinguish w and u from we because w and u are not
dependent on a certain environment index. Following the

Figure 2. Diagram of models that learn invariant and non-invariant
features. Node u represents the feature encoder hu(·). Nodes
we stand for the posteriors of the classifier parameters given De

u,
which is the data distribution of environment e transformed by
hu(·). Node w stands for the posterior given the data from the
mixture of environments, Du. (left) when hu(·) encodes non-
invariant features, each environment has a unique posterior of clas-
sifier parameters, which has a dependency on on the environment
index e; (right) when hu(·) encodes invariant features, we has al-
most the same posterior with w, which is no longer dependent on
the environment index e.

common practice in typical mean-field variational inference
[10], we assume the same prior p0(w) for all we and w.

If the feature extractor hu(·) learns non-invariant fea-
tures, the data distribution of De

u differs with e. So the pos-
terior p(we|De

u) would be different among environments.
Then there is a dependency of we on e as illustrated in Fig-
ure 2 (left) . We further have p(we|De

u) ̸= p(w|Du) because
the data distribution of De

u is different from that of Du. In
such the case, the model can not generalize to an unseen
environment e′ because the De′

u can be arbitrary.
The goal of invariant learning is to obtain a extractor

hu(·) that encodes invariant features. With the invariant
representation, the data distribution of De

u will be the same
for all e. Consequently, the posterior p(we|De

u) should be
close for each environment and they are all further equiva-
lent to the shared posterior: p(we|De

u) ≈ p(w|Du). Figure
2 (right) illustrates this case by removing the dependency of
node we on the node e.

Motivated by aforementioned intuition, we propose our
Bayesian Invariant Risk Minimization (BIRM):

max
u

∑
e

Equ(w)[ln p(De|w, u)] (4)

+λ
(
Equ(w)[ln p(De|w, u)]− Eqeu(w

e)[ln p(De|we, u)]
)
,

where qu(w) ≈ p(w|Du) and qeu(w
e) ≈ p(we|De

u), are the
approximate posterior distributions for the classifier given
Du and De

u; the two terms,

Eqeu(w
e)[ln p(De|we, u)] =

∫
ln p(De|we, u)qeu(w

e)dwe,

Equ(w)[ln p(De|w, u)] =
∫

ln p(De|w, u)qu(w)dw



are the expected log likelihood of qeu(w
e) and qu(w) on the

data from environment e, respectively.
Note that the approximated posteriors qu(w) and qeu(w

e)
explicitly depend on u. The first term in Eq. (4) is maxi-
mizing the expected log likelihood of the shared posterior
qu(w) of w by optimizing over u. It encourages u to retain
as much information as possible to enable qu(w) to fit the
data distribution. The second term in Eq. (4) requires u to
learn invariant features. If hu(·) encodes non-invariant fea-
tures, the transformed distribution De

u varies among envi-
ronments. Recall that qeu(w

e) is the posterior given De
u and

qu(w) is the posterior given Du. So qeu(w
e) can achieve

higher likelihood than qu(w) on De
u. Then we impose a

penalty to require hu(·) to discard non-invariant features.
Note that the vanilla definition of IRM in Eq. (2) is

based on a single point estimation of w, which can be highly
unstable when data is insufficient. Rather than point esti-
mation, BIRM is induced by the posterior distributions di-
rectly, which is less prone to overfitting [5, 8, 33].

Variational Inference. The estimation of the posterior dis-
tributions is non-trivial in large models. Here, we approxi-
mate them using qeu(w

e) and qu(w) by variational inference.
Given a distribution family Q, we approximate the posterior
distribution by finding the optimal q ∈ Q that maximizes
the evidence lower bound (ELBO). The objective function
to estimate qeu(w

e) is:

qeu(w
e) = argmax

q′∈Q
Eq′

[
ln p(De|w, u)

−KL(q′∥p0(w))
]
, (5)

where the first term is to maximize the expected log likeli-
hood of the posterior distribution, and the second term aims
to keep q′ close to the prior p0(w). Similarly, the objective
function to obtain qu(w) is:

qu(w) = argmax
q′∈Q

∑
e

Eq′
[
ln p(De|w, u)

−KL(q′∥p0(w))
]
. (6)

Following common practice in variational inference
(mean field approximation) [10], we choose factorized
Gaussian distributions, i.e., Q = {N (µ,Σ) : µ =
[w1, ..., wd]

⊤,Σ = diag(σ1, · · · , σd)}, where d is the di-
mension of the classifier parameter w. The prior p0(w) is
set to a Gaussian distribution with zero mean: N (0, σI).
The estimated posteriors by Eq. (5) and (6) are denoted as
qu(w) = N (µ̃, Σ̃) and qeu(w

e) = N (µ̃e, Σ̃e).
With the help of variational inference, we are finally able

to optimize Eq. (4). Specifically, the training process will
iterate among solving Eq. (5), (6), and (4).

The following proposition characterizes the behavior of
qeu(w

e) and qu(w) when we learn an invariant u.

Proposition 2. If hu(·) does not extract spurious features,

as ne → ∞, qeu(w
e)

D−→ qu(w) and

Equ(w)[ln p(De|w, u)]− Eqeu(w
e)[ln p(De|w, u)] → 0,

where D−→ indicates convergence in distribution.

The proof of Proposition 2 is in Appendix A. Proposition
2 indicates that if hu(·) does not extract spurious feature, the
penalty will be zero and BIRM only consider the empirical
risk of the model. Otherwise, a penalty will be induced to
encourage hu(·) to discard spurious features.

4.2. Variance Reduced Reparameterization

Note that we use Monte Carlo samples from qu(w) and
qeu(w

e) to estimate the penalty term in Eq. (4). A common
practice is to draw samples by reparameterization trick [29]:

w = µ̃+ ϵΣ̃, we = µ̃e + ϵeΣ̃e,∀e, (7)

where ϵ, ϵe ∼ N (0, I), ϵ ⊥ ϵe,∀e ∈ Etr. However, in
Proposition 2, these two expectation terms are close but
conventional reparameterization method may induce high
variance during training. Consider that we collect K sam-
ples to estimate the expectations, wu,1, · · · , wu,K from
qu(w) and we

u,1, · · · , we
u,K from qeu(w

e); the estimated
penalty is computed as:

JK(u) =
1

K

K∑
i=1

∑
e

− ln p(De|wu,i, u) + ln p(De|we
u,i, u).

(8)

The variance of JK(u) is characterized as following.

Proposition 3. By conventional reparamterization in Eq.
(7), as ne → ∞, V[JK ] → c/K, where c is a constant and
V[JK ] is the variance of JK .

Proposition 3 indicates that the variance of estimated
penalty JK is a constant when given K. In this case, we
need a large K to make the training algorithm stable. Be-
sides, near the end of training, the expectation of the penalty
is close to zero (according to Proposition 2), meaning that
the variance can dominate the penalty.

To fix this, we propose the variance reduced reparame-
terization trick. Our main intuition is to use shared auxil-
iary noise variable ϵs for both w and we so that the random-
ness of sampling can cancel each other after the subtraction.
Specifically, we sample ϵs ∼ N (0, I), and use it to param-
eterize both wu and we

u:

w = µ̃+ ϵsΣ̃ we = µ̃e + ϵsΣ̃
e,∀e (9)

We name the reparameterization in Eq. (9) the variance re-
duced reparameterization trick. The following proposition
characterizes the advantage of this method.



Proposition 4. By the variance reduced reparameterization
in Eq. (9), as ne → ∞, V[JK ] → 0, where V[JK ] is the
variance of JK .

Comparing Proposition 4 with Proposition 3, we can see
that the variance reduced reparameterization can achieve
much smaller variance than the conventional method.

4.3. Fast Adaptation

Although the introduction of Bayesian posterior is
straightforward and reasonable, it is computation-exhausted
to find the ELBO solution of Eq. (5) on different environ-
ments at each step. We further borrow ideas of fast adap-
tation from MAML [18] to estimate qeu(w

e) in a more ef-
ficient way. Proposition 2 shows that as the training pro-
cedure proceeds, qeu(w

e) will be closer to qu(w) when less
spurious features are extracted by hu(·). This makes it pos-
sible to perform fast estimation of qeu(w) as following:

qeu(w) = N (µ−∇µEqu(w) ln p(De|w, u),Σ), (10)

where qu(w) = N (µ,Σ). Here, the mean of qeu(w
e), µe,

is approximated by a step of gradient descent of µ on the
data from environment e. The feasibility of fast adaptation
is based on the nearness of qeu(w

e) to qu(w) indicated by
Proposition 2, which makes single step estimation plausi-
ble. By this method, we do not need to estimate qeu(w

e)
from scratch each time. Note that full algorithm of BIRM
is included in Appendix B.
Remark. An existing work [50], proposes Domain-
Invariant Learning with Uncertainty (DILU), which also
estimates a distribution of classifiers for better OOD per-
formance. Specifically, they randomly draw samples with
the same label from each environment and match the out-
puts of the samples. However, existing IRM works typi-
cally consider an extremely challenging task where the la-
bels are noisy [2, 4, 11, 32, 40, 51]. Due to the existence of
label noise, DILU can force to align the prediction of sam-
ples from different classes, which will hinder the learning
of causal features. Though DILU does not fall into the line
of IRM methods, we add DILU as a baseline in the experi-
ments in Section 5. The results in Section 5 show that our
method outperforms DILU by a large margin.

5. Experiments
In this section, we demonstrate the effectiveness of

BIRM on several datasets, one Synthetic dataset and three
vision dataset. Details are summarized in Table 1.
Baselines. We compare BIRM with (1) standard Empirical
Risk Minimization (ERM); (2) three existing IRM meth-
ods: IRMv1 [4], REx [32], and InvRat [11]; (3) a re-
lated domain generalization method: DILU [50]; (4) ERM
trained on the dataset without spurious feature (Oracle).

Dataset Invariant Spurious Training Testing

Synthetic∗ X1 X2 ρe = 1.0 ρe = 9.9

CMNIST Digit Color

ColoredObject Object Background

CifarMnist CIFAR MNIST

Table 1. Illustration of datasets. “Invariant” and “Spurious” stands
for the invariant and spurious features. The spurious feature has a
strong correlation with the label, as shown in “Training” samples.
However, the correlation is reversed in the “Testing” samples to
simulate the distributional shift. ∗ For the Synthetic dataset, X2 is
generated with different ρe according to Eq. (11).

Sample size 5K 2K 1K 0.5K

Oracle 0.97 0.98 1.02 1.02

ERM 28.40 27.22 30.32 28.66
IRMv1 2.15 4.31 8.76 13.75
REx 5.55 8.65 15.40 15.12
InvRat 2.25 4.15 9.03 13.66

BIRM (Ours) 1.82 2.90 3.17 3.86

Table 2. Test MSE on the synthetic dataset. Sample size stands
form the amount of training data.

5.1. Synthetic Dataset

The synthetic dataset considers a similar case with [4]
where the spurious feature is induced by anti-causal effect.
Specifically, the dataset is generated as following:

X1 ∼ N (0, σ2I), Y = 1⊺X1 +N (0, σI) (11)

X2 = Y · 1+N (0, (ρeσ)2I),

where X1, X2 ∈ R2 and y ∈ R. X1 and X2 are the invari-
ant and spurious features respectively. I is identity matrix
and 1 is the vector of 1. ρe varies in different environments,
indicating that the correlation between the spurious feature,
X2, and Y is unstable. The larger ρe is, the weaker corre-
lation between X2 and Y . The training dataset consists two
environments, in which ρe is set to 0.5 and 1.0, respectively.
In the testing dataset, ρe is set to 9.9. A model depending
on the spurious feature is expected to perform poorly in the
testing dataset. We fit a linear model to predict Y on X1

and X2. Then we evaluate the Mean Squared Error (MSE)
between the predicted value Ŷ and Y : E[(Y − Ŷ )2].

Table 2 shows the results of each method with different
amount of training data. The poor performance of ERM
on the test dataset indicates that ERM relies on the spu-
rious feature X2. IRM baselines performs well when the
sample size is 5K. However, their performance deteriorates
quickly with lessened data. Our BIRM consistently out-
performs the baselines IRM, IRMv1, REx and InvRat in all
settings. When the data is limited, BIRM improves upon the



Sample size 50K* 40K 30K 20K 15K 10K 5K

Oracle 72.45 71.61 70.19 69.45 68.11 66.99 64.15

ERM 10.80 11.03 11.08 13.58 16.22 18.20 21.04
DILU 50.22 52.31 45.31 44.21 48.92 43.14 43.83
IRMv1 67.45 65.25 63.46 58.67 49.51 35.60 26.19
InvRat 66.35 66.61 61.05 57.25 50.04 34.28 25.42
REx 69.12 69.10 66.94 63.35 56.50 43.17 32.55

BIRM (Ours) 69.97 69.47 69.06 67.02 66.78 66.40 60.01

Table 3. Test accuracy on CMNIST by MLP of hidden size 390
with varied training sample size. IRMv1, REx and InvRat deterio-
rate quickly with less data. BIRM improves baselines significantly
in the data-starving case. *Standard sample size is 50K in [4, 32]

baselines by a significant margin: the test MSE of BIRM is
3.86 given 0.5K training data while the test MSE of other
IRM baselines is all larger than 13!

5.2. Vision Datasets

In this section, we evaluate BIRM on three vision classi-
fication datasets with spurious features, CMNIST [4], Col-
oredObject [1, 55] and CifarMnist [34, 44]. Multi-layer-
perceptron (MLP) is adopted for CMNIST and ResNet-18
is adopted for ColoredObject and CifarMnist. The datasets
and experimental settings follow the conventions in IRM
literature [1, 2, 4, 11, 32, 34, 35, 51, 55].

We use bias ratio to denote the correlation of the spu-
rious feature with the label [55]. Each dataset contains
two training environments and one testing environment.
The bias ratio differs across environments, denoted as
(r1, r2, r3), where r1 and r2 are the training bias ratio, and
r3 is the testing one [55].

CMNIST [4]. CMNIST consists of digit images in 2
classes: 0 and 1. These images are repaint with colored
background as a spurious feature. As defined before, the
bias ratio is (0.9, 0.8, 0.1) in CMNIST. To make it more
challenging, 25% label noise is added to CMNIST [4, 55].

CifarMnist [34, 44]. Each image in CifarMnist is syn-
thesized by concatenating two component images: CIFAR-
10 (invariant) and MNIST (spurious). The bias ratio is
(0.999, 0.7, 0.1). The label noise ratio is 10% [4].

ColoredObject [1, 55]. ColoredObject is constructed
by superimposing eight classes of objects extracted from
MSCOCO on a colored background (spurious feature). The
bias ratios are (0.999, 0.7, 0.1). 10% label noise is injected.

5.2.1 Results

We summarize the results of CMNIST in Table 3. Note
that CMNIST adopted in [4, 32] contains 50K image sam-
ples. In this paper, we further reduce the sample size by
randomly subsampling. As Table 3 shows, the performance

Figure 3. BIRM versus baselines with different model size

Method ColoredObject CifarMnist

Oracle 85.3±0.6 83.7±1.5

ERM 49.8±0.4 39.5±0.4
IRMGame 55.7±1.8 46.7±2.1
DILU 56.2±1.7 50.2±1.7
IRMv1 71.4±0.2 51.3±3.0
REx 73.2±2.9 50.1±2.2
InvRat 73.5±1.5 52.3±0.9

BIRM (Ours) 78.1±0.6 59.3±2.3

Table 4. Test accuracy on ColoredObject and CifarMnist

of IRMv1, REx and InvRat drops dramatically if the sam-
ple size decreases from 50K to 5K. For example, IRMv1
achieves 67.45% test accuracy when provided with 50K
training data, whereas only preserving 26% test accuracy
with 5K training samples. In contrast, BIRM can maintain
a test accuracy of 60.01% with only 5K training data.

Figure 3 shows the results of each method on CMNIST
with MLP of varied hidden dimension when 10K, 20K and
50K data is provided. We can see that the large IRM base-
line models are more likely to fail with insufficient data. For
example, in the 10K training data case, the performance
of REx drops from 55.2% to 32.4% when the hidden di-
mension of the model increases from 64 to 1024. Com-
pared with the other baselines, BIRM is more stable as the
model hidden dimension increases, i.e., the performance
only slightly drops from 67.4% to 63.5% in the 10K train-
ing data case according to Figure 3. On CMNIST(20K),
BIRM consistently outperforms IRM baselines, surpassing
the best of them by over 10% when the hidden dimension is
1024 . These experimental results also provide support for
the theoretical findings in Section 3.2 that IRM can easily
fail due to overfitting with lessened data or enlarged model.

Table 4 summarizes the results of all methods on Colore-
dObject and CifarMnist. BIRM outperforms all the base-
lines significantly. The performance of ERM is only 49.8%,
indicating that it heavily relies on the spurious features.
IRM baselines, IRMv1, REx, and InvRat, achieving 71.4%,
73.2%, and 73.5% test accuracy, are more robust than ERM.
The proposed BIRM improves further to 78.5%.

On CifarMnist, Table 4 shows that ERM only achieves



Figure 4. Illustration of training IRM methods on CMNIST [4].
As the training proceeds, the penalty of the IRM baselines, REx,
InvRat and REx, vanishes quickly. However, large amount of spu-
rious feature still exist in the feature representation according to
the the non-invariant indicator (refer to Section 3.3 for definition).
Only BIRM reduces the spurious feature to a low level.

39.5% test accuracy. The test accuracy of IRM baselines is
barely over 50%. BIRM achieves 59.3% test accuracy, ex-
ceeding the best baseline model by nearly 7.0%. Overall,
we can see that the task of CifarMnist is harder than Col-
oredObject. Notably, BIRM also exceeds DILU by a large
margin on both CifarMnist and ColoredObject.

5.2.2 More Analysis

The Overfitting of IRM Penalty. Figure 4 illustrates the
trends of the IRM penalty and the non-invariant indicator
(defined in Section 3.3) during the training with 10K and
20K training data. As the training proceeds, the penalty of
all IRM baselines decay to zero. However, the non-invariant
indicators are still 20%-40% at the end. This means that the
penalty of the IRM is overfitted to zero even though large
amount of spurious is retained in the model. In contrast,
the non-invariant indicator of BIRM converges towards zero
in a pace synchronized with its penalty. Figure 4 clearly
shows the advantage of BIRM to alleviate the overfitting
when compared with other baselines.
Comparison with Strongly Regularized IRM. We have
already shown that Bayesian method improves the perfor-
mance of IRM by avoiding overfitting. A natural question
is whether stronger regularization, i.e., L2 weight decay or
early stopping [42], can also help. Table 5 compares BIRM
with strongly regularized IRMv1 on CMNIST with 10K
training samples. IRMv1 with 10−3 weight decay (the same
as [4, 32]) has 35.60% testing accuracy. A weight decay
of 10−2 can bring the testing accuracy to 49.78%. How-
ever, enlarging weight decay further to 10−1 can hinder the

Method L2 Early Stopping Train (%) Test (%)

0 ✗ 95.21 21.84
1× 10−3 ✗ 86.39 35.60
1× 10−2 ✗ 65.29 49.78

IRMv1 1× 10−1 ✗ 50.47 50.44
1× 10−3 ✓ 84.20 41.92
1× 10−2 ✓ 63.61 50.69

BIRM 1× 10−3 ✗ 66.67 66.40

Table 5. Comparison on CMNIST (10K sample size) between
BIRM and IRMv1 with L2 weight decay and early stopping. 10−3

is the default weight decay ratio in this paper and [4, 32].

Model IRMv1 BIRM

CMNIST (MLP) 1.0× 1.5×

COCO (ResNet-18) 1.0× 1.1×

Table 6. Relative training of BIRM VS IRMv1.

learning of invariant features because the training accuracy
drops to nearly 50%. Early stopping can slightly improve
the performance along with L2 weight decay, nevertheless,
it is still far behind BIRM. In conclusion, common regular-
ization techniques cannot achieve comparable performance
with Bayesian method on IRM.
Computational Overhead One possible concern for
Bayesian inference is the computational overhead. How-
ever, the computational overhead is acceptable in BIRM:
(1) Training. We estimate the posterior of the classifiers
(NOT on the feature extraction layers); therefore, the rel-
ative computational overhead is small, especially for mod-
els with large feature extractors (as shown in Table 6). (2)
Inference. With the robust feature extractor obtained from
training, we do NOT need to sample from the posterior dur-
ing inference; therefore there is no overhead.

6. Conclusions

In this paper, we investigated the failure of IRM for-
mulation in overparameterized deep learning models, and
showed that a key reason is that the IRM penalty degen-
erates due to the overfitting of large models. To remedy
this problem, we proposed a Bayesian formulation, BIRM,
which averages over the uncertain model parameter regimes
to avoid overfitting. We showed that this method stabilizes
invariant feature learning. We have conducted extensive ex-
periments to demonstrate that BIRM improves the original
IRM formulation for relatively large models.

Code Availability

Our codes are available at https : / / github .
com/linyongver/Bayesian-Invariant-Risk-
Minmization.
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Bayesian Invariant Risk Minimization

Supplementary Material

A. Theoretical Details
A.1. Proof of Proposition 1

Proof. First we prove that any element in Ω is a station-
ary point of IRM defined in (2). Let (w̄, ū) be an arbitrary
element in Ω. According to Definition 1, we have

Re(w̄, ū) = 0,∀e ∈ Etr. (12)

Note that

Re(w, u) ≥ 0,∀e ∈ Etr, w, u (13)

So it follows that

Re(w, ū) ≥ 0,∀e ∈ Etr, w

Then

w̄ ∈ argminRe(w, ū) ≥ 0,∀e ∈ Etr

So (w̄, ū) stratifies the constrain in (2). At the same time,
(12) and (13) already suffice to show that (w̄, ū) is the min-
imum of the objective. Then we conclude that (w̄, ū) is a
stationary point solution of IRM defined in (2).

The first argument that IRM degenerates to ERM in Ω
follows directly from the proof above.

Suppose there exists another collections of (w′, u′) that
matches the constrain in (2),

Ω′ := {(w′, u′)|w ∈ argmin
w

Re(w, u′),∀e ∈ Etr, (w′, u′) /∈ Ω}.

Note that the elements in Ω are excluded from Ω′ for sim-
plicity. So Ω ∩ Ω′ = ∅ and Ω ∪ Ω′ includes all (w, u) that
satisfies the constrain in (2). By (12) and (13) we know that

∀(w′, u′) ∈ Ω′, (w̄, ū) ∈ Ω,∃e ∈ Etr,
Re(u′, w′) > Re(ū, w̄) = 0

It follows that

∀(w′, u′) ∈ Ω′, (w̄, ū) ∈ Ω,∑
e

Re(u′, w′) >
∑
e

Re(ū, w̄),

This means any element (w̄, ū) in Ω has smaller objective
than any element (w′, u′) in Ω′. This means IRM in (2) will
not pick any element in Ω′.

We already know that Ω ∪ Ω′ is the whole set of (w, u)
matches the constrain. So IRM will pick arbitrary element
in Ω . Notably, by Assumption 2 and Definition 1, we do
not impose any invariant constrain in Ω. Then we prove our
first argument that IRM reduces to ERM in Ω.

A.2. Proof of Corollary 1

Proof. By definition,∑
e∈Etr

Re(w, u) + λ∥∇wRe(w, u)∥2 ≥ 0.

Thus, if w̄, ū satisfies∑
e∈Etr

Re(w̄, ū) + λ∥∇wRe(w̄, ū)∥2 = 0,

we have

(w̄, ū) ∈ argmin
w,u

∑
e∈Etr

Re(w, u) + λ∥∇wRe(w, u)∥2.

By Assumptions 1,2, we have∑
e∈Etr

Re(w̄, ū) = 0.

By Assumptions 3, ∇wR
e(w̄, ū) exists.

If ∇wRe(w̄, ū) = v ̸= 0, we have

lim
ϵ→0

Re(w̄ + ϵv, ū)−Re(w̄, ū)

ϵ
= ∥v∥2

Then for ∥v∥2/2, we have there exists δ > 0 such that
for all t ∈ (−δ, δ),

Re(w̄ + tv, ū)−Re(w̄, ū)

t
>

∥v∥2

2

By choosing t = − δ
2 ,

Re(w̄ − δv/2, ū) < −δ∥v∥2

4
+Re(w̄, ū) = −δ∥v∥2

4
< 0,

which contradicts the definition of Re.
Thus, ∥∇wRe(w̄, ū)∥ = 0,

(w̄, ū) ∈ argmin
w,u

∑
e∈Etr

Re(w, u) + λ∥∇wRe(w, u)∥2.

A.3. Proof of Proposition 2

Proof. By definition, when hu extracts invariant feature, the
data distribution in each environment is the same.

Since model is well-specified, assume the data generat-
ing distribution satisfies,

p(y|x) = p(y|hu(x), w∗).



Then by Bernstein–von Mises theorem, when ne → ∞,

we → N (w∗, F
−1
e /ne),

where w∗ is optimal solution, Fe is the Fisher information
matrix.

Note that when p(xe) is the invariant across environ-
ments, the Fisher information matrix Fe = F is a constant
matrix.

Thus, for any e1, e2 ∈ |Etr|, we have

we1 D−→ we2 .

Since w uses subset of all D (only ne samples), we have

w → N (w∗, F
−1/ne),

w
D−→ we.

A.4. Proof of Proposition 3

Proof. Similar to Proposition 2, by Bernstein–von Mises
theorem, when ne → ∞,

w → N (w∗, F
−1/ne),

where w∗ is optimal solution, F is the Fisher information
matrix.

Thus,
w = Op(1/ne)

ln p(y|x, w, u) = Op(1/ne)

ln p(De|w, u) =
ne∑
i=1

ln p(y|x, w, u) = Op(1)

Thus,
JK = Op(1/K)

A.5. Proof of Proposition 4

Proof. By Proposition 2,

we
D−→ w.

By our parameterization,

we
a.s.−→ w.

For any x, y,

ln p(y|x, w, u)− ln p(y|x, we, u) = op(1/ne)

Thus,

ln p(De|w, u)− ln p(De|we, u) = op(1)

JK = op(1/K) = 0

A.6. More Theoretical Results

A.6.1 Failure of other IRM variants

Corollary 2 (Failure of REx). Under Assumptions 1,2,3,
∀(w̄, ū) ∈ Ω, the following equality holds:

(w̄, ū) ∈ argmin
w,u

∑
e∈Etr

Re(w, u) + λVe[R
e(w, u)]

Proof. Since Re(w̄, ū) = 0 for all e, we also have
λVe[R

e(w, u)] = 0.
On the other hand Vare[Re(w, u)] ≥ 0.
We obtain that

(w̄, ū) ∈ argmin
w,u

∑
e∈Etr

Re(w, u) + λVe[Re(w, u)]

Corollary 3 (Failure of InvRat). Under Assumptions 1,2,3,
∀(w̄, ū) ∈ Ω, the following equality holds:

(w̄, ū) ∈ argmin
w,u

max
we

∑
e∈Etr

[
Re(w, u)

+ λ(Re(w, u)−Re(we, u))
]

Proof. By definition,

Re(w, u)−Re(we, u) ≥ 0, Re(w, u) ≥ 0, Re(we, u) ≥ 0.

Since for w̄, ū, Re(w̄, ū) = 0, we also have

Re(w̄, ū)−Re(we, ū) = 0.

Thus,

(w̄, ū) ∈ argmin
w,u

max
we

∑
e∈Etr

[
Re(w, u)

+ λ(Re(w, u)−Re(we, u))
]

A.6.2 Relaxed Version of Corollary 2

Here, we provide a counterpart of Corollary 2 based on a
relaxed version of Assumption 2.

Assumption 4 (Relaxed Sufficient Capacity). The parame-
ters w and u have sufficient capacity to fit the training data:
there exist w̄ and ū, such that ∀e ∈ Etr,Re(w̄, ū) ≤ ϵ.

Then we have the following results:

Corollary 4 (Failure of REx). Under Assumptions 1 and 4
∀(w̄, ū) ∈ Ω, then the penalty of relax is upper bounded as
following:

Ve[R
e(w, u)] ≤ ϵ2

Proof.

Ve[R
e(w, u)] ≤ 1

|Etr|
∑
e

[Re(w, u)]2 ≤ ϵ2.



B. Implementation Details
B.1. Definition of Non-invariant Indicator

Consider the testing dataset Dtest := {xi, yi}ntest
i=1 . For

simplicity, suppose each x is the concatenation of an invari-
ant and spurious feature, xi = [xinv

i , xs
i ]. In CMNIST (de-

scribed in Section 5), xinv corresponds to the digit shape,
“0” or “1”; xs refers to the color, green or red. Given a
function f that predicts the class of x, we can measure how
much f(x) relies on xs by replacing xs with the other color
x̄s while fixing xinv , i.e., xs is green and x̄s is red (vice
versa). The non-invariant indicator is defined as following:

1

ntest

ntest∑
i=1

1(f([xinv
i , xs

i ]) ̸= f([xinv
i , x̄s

i ])),

where 1(·) is the indication function. Non-invariant indica-
tor is the percentage of samples that changes its prediction
while spurious feature is changed.

B.2. Algorithm

The full algorithm is summarized as following:

Algorithm 1 BIRM: Bayesian Invariant Risk Minimization

Input: Feature extractor hu, classifier gw, prior p0, collec-
tion of data from multiple environments {De}Etr

e .
Output: The learned hu, classifier gw.

Initialisation :
1: while TRUE do
2: for e in 1, . . . , |Etr| do
3: Sample a batch of data (xe, ye) from De

4: Obtain the feature representation hu(xe)
5: end for
6: Update qu(w) by Eq. (6).
7: for e in 1, . . . , |Etr| do
8: Update qeu(w) by Eq. (10).
9: end for

10: Sample from qu(w) and qeu(w) to optimize Eq. (4)
with variance reduction in Eq. (9).

11: Update u to minimize Eq. (4).
12: end while
13: return u, qu(w)

B.3. Efficient Implementation

As discussed in [4], a scalar classifier w with fixed value
w = 1.0 is enough to monitor the invariance. In our al-
gorithm, we can even achieve simpler implementation by
fixing the mean of the w w = 1.0 as while tuning the vari-
ance of the qu(w), Σ, as a hyper-parameter. Together with
the fast adaptation method in Section 4.3, it makes the im-
plementation of BIRM rather efficient and convenient.

B.4. Detailed Experimental Settings

Datasets. The images in CMNIST and ColoredObject are
of size 3×32×32; the images in CifarMnist are of size 3×
64 × 32. In CMNIST, ColoredObject, and CifarMnist, the
label noise is injected by randomly changing the label to the
other values (a uniformly generated random label different
from the ground-truth). Following the conventional practice
[4,32], the spurious feature is generated after injecting label
noise.
Experimental Details. For all experiments in this paper,
we report the accuracy of the last step [24,55]. All reported
statistics are average value over 3 random seeds. We fix
the regularization penalty weight as 104 for all the exper-
iments and datasets as [4, 32], because we find the perfor-
mance is not sensitive to the regularization penalty weight
larger than 103. In CMNIST, we use gradient descent with
Adam [28] by a learning rate 4×10−4 [4]. The total training
steps are 1500. The penalty is added on the step 200. 10−3

weight decay is imposed on the MLP. These settings are
all consistent with [4, 32]. In ColoredObject and CifarM-
nist, we adopt stochastic gradient by SGD (0.9 momentum)
with learning rate 0.01. The batch size is 512. The total
training procedure lasts for 1000 steps and the learning rate
is reduced by 1/10 at the middle of the training. ResNet-
18 [25] is adopted for ColoredObject and CifarMnist. Simi-
larly, 10−3 weight decay is imposed on the neural networks.



C. Extra Experimental Results
C.1. Empirical Evidence for Proposition 1

Here we present additional experimental results on
IRMv1. The IRMv1 penalty vanishes at the end as the
model begins to memorize the data, however the non-
invariant indicator also remains 70% - 80%. In other words,
the model still heavily relies on spurious features while IRM
penalty can not detect it. These results are consistent with
those reported in Section 3.3.
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Figure 5. Illustration of training ERM on CMNIST [4] with 3-
layer MLP of different hidden dimensions. The penalty of IRM
(IRMv1) is measured but not applied to the objective. As the
training of ERM proceeds, the IRM penalty decays to zero while
the non-invariant indicator shows the existence of large amount of
spurious feature in the model. The IRM penalty vanishes faster
with larger model and less training data.

C.2. Visualisation of Different IRM methods

Figure 6 illustrates the comparison of different methods
on several typical samples from ColorMnist, by explain-
ing their predictions via GradCAM [43]. GradCAM visual-
izes the component of image which contributes most to the
model’s prediction, i.e. which area in the image the model
is paying attention to. We can see that the ERM method
mistakenly relies on the background. IRMv1 and REx can
alleviate this issue, however, still fail at some cases (e.g., the
9th sample). BIRM improves the performance of IRMv1
and REx further (e.g., bring the attention of the 9th sample
to the upper right corner where the object lives).

C.3. Ablation study

We conduct ablation study to investigate the effect of
each ingredient of BIRM. The major improvement of BIRM
over the existing baselines is to obtain the posterior distribu-
tions we and w rather than their point estimates. The Prob-
abilistic column of Table 7 shows that the distributional

nature of BIRM contributes a lot to the performance im-
provement. The second ingredient of BIRM is the variance
reduced reparameterization trick introduced in Section 4.2.
The VR column of Table 7 shows that BIRM can drops from
67.2% to 63.86% when VR is removed. The third ingredi-
ent, fast adaptation (FA), aims to reduce the computational
complexity of BIRM by estimating the posterior of we with
first order approximation as discussed in Section 4.3. Ta-
ble 7 shows that the test performance drops by only 0.32%
when fast adaptation is applied on BIRM.

Probabilistic VR FA Test Accuracy(%)

✓ ✓ ✓ 67.02
✓ ✓ ✗ 67.32
✓ ✗ ✓ 63.86
✗ ✗ ✗ 57.26

Table 7. Ablation study of BIRM on MLP with 390 hidden dimen-
sion in CMNIST with 20K data. Probabilistic stands for whether
to estimate the distribution (or the point estimation) of w and we

in Eq. (4); FA stands for Fast Adaptation; VR stands for variance
reduction reparametrization trick.
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Figure 6. Illustration of attention map of different methods on ColoredObjects test samples. The red attention mask indicates heavy
reliance; the blue one refers to ignorance. We can see that the ERM method mistakenly relies on the background. IRMv1 and REx can
alleviate this issue, however, still fail at some cases (e.g., the 9th sample). BIRM improves the performance of IRMv1 and REx further
(e.g., bring the attention of the 9th sample to the upper right corner where the object lives).


