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A. Implementation Details

Initialization of Video Encoders. All the video encoders
are initialized with the pretrianed models on Kinetics-
400 [2]. This is similar to the common practice of Ima-
geNet [3] pre-training in image understanding.

Combination with External Video Labels on Activi-
tyNet. As mentioned in the main body of the paper, most
videos on ActivityNet only contain one action class. There-
fore, most previous works [1,9, 10, 15, 17,22-24,26, 28],
including some end-to-end methods [7, | 1, 16], decom-
pose temporal action detection (TAD) into class-agnostic
temporal localization and video-level action classification.
Following these works, we use the video-level action clas-
sification results of [27], a winning solution in ActivityNet
Challenge 2017. To be concrete, we assign the top two
video-level classes predicted by [27] to all class-agnostic
detections, forming class-aware detections. The confidence
score of the original class-agnostic detection and the classi-
fication score by [27] are fused by multiplication.

Implementation Details of AFSD. When implementing
AFSD [7], we follow the details in their official code.
They use a smaller batch size (1 vs. 4), a smaller learn-
ing rate (107° vs. 10~%), and a longer training schedule (16
epochs vs. 12 epochs). We tried the setting defined in this
paper but observed a performance drop of around 1.5% av-
erage mAP. Therefore, we stick to the original settings.

B. Additional Results

The Effect of Batch Size. Tab. Al studies the effect of
batch size for training. We change the learning rate follow-
ing the linear scaling rule [5] when changing the batch size.
We observe that increasing batch size from 4 (the default
setting) to 16 results in similar performance. Therefore, we
may use a larger batch size to improve GPU utilization and
speed up training. For example, we can finish training of
TadTR [14] with TSM ResNet-18 [8] encoder on Activi-
tyNet using two NVIDIA RTX 3090 GPUs in 41 minutes.
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Table Al. The effect of batch size, measured by average mAP
on ActivityNet. Encoder: TSM ResNet-18. Detector: TadTR.
Only cropping and horizontal flipping augmentations are used. All
models are trained using a single GPU (except * uses two GPUs).

Batch Size | 4 8 16

mAP 3340 3343 33.25
Training Time | 96min  85min  41min*

Even so, we stick to a relatively small batch size so that our
experiments can be reproduced more easily.

Generality of the Effectiveness of End-to-End Training.
In the main body of this paper, we validate the effectiveness
of end-to-end training on TadTR with TSM [8] encoders.
Here we also conduct the validation on more video encoders
(SlowFast [4] and I3D [2]) and detection heads (AFSD [7]
and G-TAD [23]). The results are summarized in Tab. A2.
All results are obtained with the default setting. We see that
end-to-end learning consistently improves detection perfor-
mance. The performance gain ranges between 9.79% and
10.54% on THUMOSI14 [6]. On ActivityNet, the perfor-
mance gain is at least 1.77%. The results show that the
effectiveness of end-to-end learning is general. Note that
the results of G-TAD with TSM ResNet-18 are lower than
those in BSP [21] and LowFi [22]. The reason might be the
low resolution of videos.

It is interesting that the performance difference between
TadTR and G-TAD increases when we switch from head-
only learning to end-to-end learning. It indicates that tra-
ditional head-only learning might not be appropriate for
benchmarking different approaches, as head-only learning
restricts the performance of an approach.

Besides THUMOS 14 and ActivityNet, we also evaluate
the effect of end-to-end learning on HACS Segments [25].
As can be observed in Tab. A3, end-to-end training results
in a performance gain of 6.42% in terms of average mAP.
This again demonstrates the benefit of E2E learning and its
generality.
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Encoder 13D SF R50 TSM R50
Head TadTR TadTR AFSD
Head-only 32.66 44.55 30.52
E2E 45.06 54.17 40.31
Gain | +10.54 +9.62 +9.79
(a) THUMOS14
Encoder SFR50 TSM R18
Head TadTR G-TAD G-TAD
Head-only 3261 32.53 31.12
E2E 35.10 34.36 32.89
Gain | +249 +1.83 +1.77
(b) ActivityNet

Table A2. End-to-end learning is effective for different video en-
coders and detection heads. SF: SlowFast. R18/50: ResNet-18/50.
Performance measured by average mAP.

Paradigm ‘ 0.5 0.75 095 Avg. (Gain)
Head-only | 30.69 18.94 5.26 19.28
E2E 40.32 2497 17.71 25.70 (+6.42)

Table A3. The effect of end-to-end learning on HACS Segments.
Encoder: TSM ResNet-50. Head: TadTR.
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Figure Al. The effect of spatial resolution on ActivityNet. En-
coder: TSM ResNet-18. Head: TadTR.

The Effects of Image and Temporal Resolution on Activ-
ityNet. Fig. Al and Fig. A2 illustrate the effects of image
resolution and temporal resolution (number of input frames)
on ActivityNet, respectively. Similar to THUMOS14, in-
creasing image resolution steadily boosts detection perfor-
mance and also increases computation cost. As the image
resolution reaches 962, the performance gain of increasing
image resolution decreases. Compared to image resolution,
the detection performance is less sensitive to temporal reso-
lution. The reason might be that the action instances on Ac-
tivityNet are relatively longer than those on THUMOS14.
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Figure A2. The effect of temporal resolution (number of in-
put frames) on ActivityNet. Encoder: TSM ResNet-18. Head:
TadTR.

Frame Rate | 20FPS |  10FPS
Feature Fusion | - | - v
mAP | 475 | 421 451

Table A4. The effect of multi-scale feature fusion. Encoder: 13D.
Detector: TadTR.

Besides, the action classes on ActivityNet are more related
to scenes than motion. This observation also supports our
choice of using sparse frame sampling on ActivityNet.

The Effect of Feature Fusion. In the I3D encoder, we fuse
the features from the fourth stage and fifth stage. We verify
the effectiveness of this strategy in Tab. A4. It is observed
that this strategy improves the performance by 3%. It helps
to compensate for the temporal information loss due to a
decrease of the frame rate from 20 FPS to 10 FPS.

The Effect of the Frame Sampling Manner. By default,
the encoder takes all frames from an input clip and extract
feature in a temporally fully convolutional manner in our
study. An alternative way is to sample fixed-length snippets
one by one in a sliding-window manner and extract features
for each snippet. The length of snippets is defined when
the video encoder is pre-trained for action recognition (e.g.,
8 for TSM). It is adopted by most works [9, 12, 23] based
on offline features. However, it actually increases the to-
tal computation cost as adjacent snippets overlap with each
other. In end-to-end training, we can still use this manner,
at the expense of efficiency. Due to a high memory us-
age, we are only able to conduct the experiment with TSM
ResNet-18 on 4 GPUs. As can be observed in Tab. A5, the
snippet-wise manner actually gives lower performance than
the fully convolutional manner, probability due to a limited
temporal receptive field.



| mAP  FLOPs
snippet-wise 3425 171.8G
fully-convolutional | 36.12  21.5G

Table AS. The effect of frame sampling manner. Encoder: TSM
ResNet-18. Detector: TadTR. Dataset: THUMOS14. FLOPs are
measured on clips of 25.6 seconds.

C. Computation Cost Analyses

Reasons for the Lower Computation Cost Than [13]. In
Tab. 1 of the main document, we show that the detector
built in this work is 126x faster (587ms vs. 74.1s) than
the previous state-of-the-art non-end-to-end method [13].
The speed-up comes from three aspects. Firstly, we use
a smaller image size and a lower frame rate. The setting
of image size and frame rate in [13] is 2242 and 30 FPS,
while the setting in our case is 962 and 10 FPS. Secondly,
we extract features in a fully convolutional manner instead
of the conventional snippet-wise manner used in [13]. To be
concrete, they use a sliding window strategy to sample snip-
pets of 64 frames, which is the default input length of the
I3D encoder, for feature extraction. The stride between two
adjacent windows is 8 frames, 1/8 of the window length.
Therefore, redundant computation is introduced. Finally,
the encoder (SlowFast) and the head (TadTR) are more ef-
ficient than those in [13]. We note that these issues are
not unique to [13]. They are prevalent in previous meth-
ods based on offline features and impede the application of
TAD in real-world scenarios. We believe that end-to-end
TAD can help eliminate these obstacles.

Computation Cost of Various Video Encoders. Except
for the video encoders studied in the main paper, we ana-
lyze the computation cost of several video encoders used in
previous end-to-end methods [16,20] and the pre-training
method [1] in Tab. A6. As they have different settings in
temporal pooling, we adjust the number of sampled frames
to ensure that they output features of the same length. We
observe that C3D [18] and R(2+1)D-18/34 [19] are much
heavier than SlowFast, although the former two have shal-
lower backbones. For example, C3D, the fastest among
them, is around 5x slower than SlowFast. They are less
appropriate for temporal action detection. Therefore we do
not use them in our experiments.

Training Time. Using the settings described in the imple-
mentation details, training SlowFast with TadTR head takes
around 4 GPU hours on THUMOS14. On ActivityNet, the
training time is around 11 and 1.5 GPU hours using Slow-
Fast and TSM ResNet-18, respectively.
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