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1. Overview
The appendix aims at providing more details on the

method design (Sec. 2), experimental settings (Sec. 3), and
more experimental results (Sec. 4).

2. Method Details
In this section, we give some explanations for some de-

tails of the proposed method that are not stated in the main
paper.

2.1. Supervision Feature Structure

This section gives more details about designed struc-
tural model for generating ground-truth part-aware geomet-
ric features w.r.t. further explanations for each component,
operation cells and the rationality of the design.

Input features. Input features for each point are ordered
part-aware feature sets formed by different kinds of geomet-
ric features from points having the same part labels with the
target point. A maximum radius is set between the sampled
points and the target point considering the limited recep-
tive field of some point-cloud processing backbones such
as DGCNN. This value is set to 0.5 in our implementation.

The full set of ordered input feature sets are formed by
first sampling such part-aware feature sets from input ge-
ometric features such as coordinate vectors, then expand-
ing the resulting sets by adding feature sets calculated by
simple point-level operations among them to it. For ex-
ample, suppose each point i has two different input geo-
metric features: the coordinate vector p⃗i and the normal
vector n⃗i. Their ordered respective part-aware feature sets
for point i, constructed by sampling same kind of features
from points having the same part labels with it, are de-
noted as Pi and Ni respectively. In the first step, we can
get {Pi,Ni} for point i. Then after expanding the set, we
get {Pi,Ni,Pi −Ni...}, where Pi −Ni refers to a feature
set formed by element-wise minus between Pi and Ni. An
ordered part-aware geometric input feature set such as Pi

is referred as an “operant” in the operation tree. In prac-
tice, an ordered feature set is formed to a matrix with each

of its line a feature vector of a point, thus Pi for Pi and
Ni for Ni. If each point has two different geometric fea-
tures, the full set of input part-aware geometric matrices
contains 7 elements: {Pi, Ni, Pi ·Ni, Pi+Ni, Pi−Ni, Ni−
Pi, cross product(Ni, Pi)}. If each point has one geometric
feature, the full set of input part-aware geometric matrices
contains 4 elements: {Pi, 2Pi, P

2
i ,−Pi}.

Operators. Operators are introduced to transform the input
features step by step for the output intermediate supervision
feature. Such operators include grouping operators, point-
level unary operators, and point-level binary operators, as
summarized in Table 1. Then the grouping operator set, the
unary operator set, and the binary operator set are further
referred as G, U , and B respectively.

Some operators may seem confusing, for which we give
them some brief explanations as follows:

• Orthogonalize: Given a matrix M , first calculate its
signular vectors and singular values by U, S, V T =
SVD(M), then take the matrix-vector multiplication
between two singular vector matrices for the result:
Orthogonalize(M) = UV T .

• Cartesian Product: Given two feature sets from one
point, S1 and S2, calculate the cartesian product be-
tween them by S1×S2 = {(si, sj)|si ∈ S1, sj ∈ S2}.

Operation cells. We introduce several different kinds of
operation cells with fixed operator combinations to encour-
age some fixed operation sequences. Details of such oper-
ator combinations for operation cells in different levels are
listed as follows:

• Level-3 cells (Top level cells): a grouping operator fol-
lowed by a unary operator.

• Level-2 cells: a grouping operator followed by a uanry
operator.

• Level-1 cells: an operant followed by a uanry operator.

Justification for the designed operation cells. In the
design of operation cells, we set some fixed operator se-
quences for them such as a grouping operator followed by
a unary operator. The design of the structure of operation
cells is heuristic but also reasonable. For example, a unary
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Table 1. Candidates of each kind of feature transformation operator.
“SVD” denotes “Singular Value Decompse”, “Identity” refers to no op-
erations, where the input ordered feature set (matrix) is not transformed by
any unary operator.

Operators Choices
Grouping operators Sum, Average, Maximum, SVD

Binary operators
Add, Minus, Multiply,

Cross Product, Cartesian Product,
Matrix-vector Product

Unary operators
Identity, Square, Double,

Negative, Orthogonalize, Inverse

Table 2. Examples of hand-crafted ground-truth features used in previous
works. Matrices in the table are part-level matrices formed by correspond-
ing features from points in a part. For notations used, F is the flow matrix,
P is the coordinate matrix, N is the normal matrix. M denotes the central-
ized matrix of M . Note that the geometric feature listed in the left column
of the table may not be the exact feature output by the calculation process
listed in its corresponding right cell, but a part of the output feature such
as a row vector of the matrix.

Feature Calculation process
Rotation matrix orth(sum(cartesian(P + F, P )))

Cone apex sum(cartesian(N+T , rowsum(N · P )))

Cylinder axis svd(N)

Sphere center sum(cartesian((−2P )+T , rowsum(P 2)))

Sphere radius sqrt(mean(P − c⃗)2)

Plane normal svd(P )

operator following a grouping operator can further trans-
form the grouped feature, extracting part-level information
from it. Such calculation routines are common in the calcu-
lation process of some features such as the rotation matrix
R. To be more specific, several steps in the calculation pro-
cess of R contain a combination of “Centralize” and “Sum”,
where the former is a unary operator and the later is a group-
ing operator. This is only one possibility we explored in our
practice, we believe there could be many other strategies to
design operation cells (e.g. other computing routines) or
just constructing the operation tree without introducing op-
eration cells. How to design suitable operation cells, or how
to add proper constraints for operation combinations in the
operation space is interesting and worth exploring.

Connections with hand-crafted geometric features. The
constructed supervision feature space contains many hand-
crafted geometric features used in previous works. Some
examples are summarized in Table 2. The calculation pro-
cess uses matrix forms of the ordered geometric feature sets.

2.2. Supervision Feature Distribution Space

This section aims for some further explanations of the
constructed supervision feature distribution space w.r.t. how
we decompose it into a tree-structured distribution space
and the conditional sampling process performed on the dis-
tribution tree.

Decomposed tree-structured distribution set. Instead of
using one single distribution, we decompose the total/joint
distribution into a tree-structured distributions set to better
model the generation process of the operation tree. Specif-
ically, we use a distribution cell to depict the space of an
operation cell, where the operator sequence in the operation
cell is generated by a set of conditional operator distribu-
tions. For instance, a distribution cell for an operation cell
with the ordered operator sequence [a grouping operator, a
unary operator] is composed of a grouping operator distri-
bution and |G| unary operator distributions. Each possible
grouping operator has its own unary operator distribution.
Thus, the distribution cell for this specific operation cell can
be organized into a distribution tree with the grouping oper-
ator distribution as the top distribution and a unary operator
distribution attached to each element in the grouping oper-
ator.

To model possible connections between cells from adja-
cent two levels, we introduce a connection distribution for
each possible operator sequence of the upper-level cell to
depict each possible connection and the operator that should
be used for connection. For example, a Level-3 cell can be
connected with two Level-1 cells with each kind of binary
operator, or a Level-2 cell and a Level-1 cell with each kind
of binary operator, or a Level-1 cell and a Level-2 cell with
each kind of binary operator, or a single Level-1 cell with no
binary operator. Thus, the total number of possible connec-
tions is 3|B|+ 1. A distribution containing elements of this
number is introduced for each possible operator sequence
of the upper-level cell.

Conditional operation tree sampling. After the distribu-
tion space has been constructed, a conditional sampling pro-
cess is adopted to sample an operation tree from the space.
Specifically, to sample an operation cell from its respective
distribution cell, its top operator is sampled at first. Then,
the distribution for the following level operator of this top
operator is chosen to continue the sampling process. Specif-
ically, the sampling process for sampling an operation se-
quence [op1, op2, ..., opk] is conducted by: Sample opk,
conditioned on opk and sample opk−1, ..., conditioned on
opk, opk−1, ..., op2 and sample op1. The probability den-
sity value of the sequence is then calculated by:

p([op1, op2, ..., opk]) = (1)
p(opk)p(opk−1|opk)...p(op1|[opk, ..., op2]). (2)

Similarly, to sample an operation tree, the top operation
cell is first sampled. Then, a connection is sampled con-
ditioned on the sampled operation cell structure. The sam-
pled connection determines what distribution cells to con-
tinue the sampling process and what binary operator to use
for connection if needed. Thus, the operation tree can be
sampled by such a top-down manner.



2.3. Supervision Feature Distribution Learning

In this section, we talk about how to learn parameters
for distributions in the supervision feature space, including
the supervision feature sampling process, its cross-domain
generalization ability evaluation and the distribution updat-
ing process.

Supervision feature sampling. A supervision feature is
generated by first sampling an operation tree from the con-
structed distribution space and then pass input part-aware
geometric features of each point through the operation tree
to get its calculated part-aware geometric feature. The op-
eration tree is sampled by the conditional sampling process
from the distribution space as state above.

Cross-validation setting. Each selected supervision is
put under a cross-validation process to estimate its cross-
domain generalization ability. To cross-validate the gener-
alization ability of the selected supervision, we first split
the train dataset into K subsets with a relatively large dis-
tribution shift across them. Then, the selected supervision
is tested on each K − 1 : 1 train-validation fold. The aver-
age value between the metric on the validation set and the
train set is taken as the estimated score for its generaliza-
tion ability. In the supervision search process, the general-
ization score is further taken as the reward for the selected
supervision and used for the following supervision distribu-
tion space update process. The cross-validation procedure
for generalization gap evaluation is summarized in Algo-
rithm 1.

Supervision distribution space optimization. We opti-
mize distributions in each layer related with the sampling
process of the selected supervision via the REINFORCE al-
gorithm. Optimizing those conditional distributions via RE-
INFORCE results optimizing the overall/joint distribution
via REINFORCE. The optimization strategy is derived from
the REINFORCE algorithm, where each parameter wi that
counts in the sampling process is updated by minusing its
corresponding ∆wi = αi(r−bi)ei, where ei = ∂ ln g/∂wi,
g is the probability density function. Thus, ei for parameter
wi of a distribution can be derived as:

ei =
∂g

∂wi
(3)

=
∂ ln(g(H)g(v|H)g(C \ {v}|H)g(L|H, C))

∂wi
(4)

=
∂ ln(g(H) + ∂ ln(g(v|H)) + ∂ ln(g(L|H, v)))

∂wi
(5)

=
∂ ln(g(v|H)

∂wi
, (6)

where g(H) is the probability density of values sampled
in upper layers, g(L|H, C) is the probability density of val-

ues sampled in lower layers conditioned on values sampled
in current layers C and those sampled in upper layers H,
which are not relevant with the sampling distribution in the
current layer resulting value v. H denotes the set of op-
erators in upper layers of the operation tree, C means the
set of operators in the current layer of the operation tree,
while L refers to the set of operators in lower layers. The
conditional distribution for each sample g(v|H) is a multi-
nomial distribution, in our implementation, which can be
simply calculated by the class function “log prob” of the
corresponding PyTorch Distribution module.

2.4. Greedy Supervision Feature Selection

This section aims for some further explanations of the
unstated details of the greedy feature selection process.

After we have got the optimized supervision distribution
set, we greedily select suitable supervisions from the opti-
mized space. At most three supervisions are selected from
the optimized space. To complete the supervision selection
process, we first select K supervisions from the optimized
space by randomly sampling from the optimized supervi-
sion space. Then the performance of such K supervisions
are evaluated under a simulated domain-shift setting. From
the ranked set, top 2 supervisions are selected to combine
with top K/2 supervisions and form the second supervi-
sion set. Supervision combinations in the second super-
vision set are further evaluated and ranked. Then, top 3
supervision combinations containing 2 supervisions are se-
lected to combine with top K/3 single supervisions from
the first supervision set. The resulting combination set is
further evaluated and ranked. The supervision combination
that achieves the best estimated performance is selected for
further evaluation. The performance of the selected super-
vision combination is regarded as the performance of the
optimized supervision distribution space. The training stage
of the supervision evaluation process is referred as the “reg-
ular training stage”. This greedy selection process is also
summarized in Algorithm 3.

Algorithm 2 SortByCrossVal.
Input: The modelM; Split train set Ssp = {S1,S2, ...,Sk}; A set of

intermediate supervision features T = {t1, t2, ..., tK}.
Output: Sorted intermediate supervision features T ′.
1: for i = 1 to |T | do
2: s← Cross Val(M, T1[i],Ssp)
3: T1[i]← (T1[i], s)
4: T ′ ← sorted(T )
5: return T ′



Algorithm 1 Cross Val. “TrainValidation(·, ·, ·, ·)” takes a
model, the train dataset, the validation dataset and the num-
ber of training epochs n as input, trains the model for n
epochs and returns the gap between the performance of the
model achieved on the validation set and the training set at
the best validation epoch.
Input: The modelM; Split train set Ssp = {S1,S2, ...,Sk}; Interme-

diate supervision feature t; Epochs for training n.
Output: Estimated generalization score which is actually the average gen-

eralization gap across all train-validation splits.
1: scores← [ ]
2: for i = 1 to |Ssp| do
3: Str ← Ssp \ {Si}
4: Sval ← {Si}
5: si ← TrainValidation(M,Str,Sval, n)
6: scores.append(si)
7: s← mean(scores)
8: return s

Algorithm 3 GreedySupervisionSelection.
Input: The modelM; Split train set Ssp = {S1,S2, ...,Sk}; A set of

sampled intermediate supervision features T = {t1, t2, ..., tK}.
Output: Selected intermediate supervision feature set Ts =
{ts1, ..., tsk}, 1 ≤ k ≤ 3.

1: T1 ← T
2: T1 ← SortByCrossVal(M, T1,Ssp)
3: T2 ← T1[1 : 2]× T1[1 : |T1|/2]
4: T2 ← SortByCrossVal(M, T2,Ssp)
5: T3 ← T2[1 : 3]× T1[1 : |T1|/3]
6: T3 ← SortByCrossVal(M, T3,Ssp)
7: Ts ← sorted({T1[1], T2[1], T3[1]})[1]
8: return Ts

3. Experimental Details
In this section, we provide some detailed information

about experimental settings that are not stated in the main
paper, including datasets used in each segmentation task,
detailed settings for each stage, implementation for base-
line models, etc.

3.1. Dataset

Mobility-based part segmentation. For the training
dataset and auxiliary training dataset, we first infer part mo-
bility information for parts in each shape. Then, during the
training process, we generate shape pairs for training based
on such part mobility information. For the training dataset,
which is created from [15], containing 15,776 shapes from
16 categories, we first infer mobility information for parts in
a shape heuristically based on their semantic labels such that
the generated mobility information for the part can align
better with real scenarios. Specifically, some heuristic con-
straints are added to infer mobility information for each part
such as the chair back can rotate around the chair seat but
not chair legs. For the auxiliary dataset created from Part-
Net [9], the mobility information for parts in a shape is also

inferred heuristically where only some general motion rules
are added, which means that parts of different semantic la-
bels share the same motion rules. The test dataset used in
our work is the same as the one used in [14], which is cre-
ated from [3].

Primitive fitting. We use the same dataset as the one pro-
vided by [6], but adopt a different data splitting strategy
such that it is more suitable to test a model’s cross-domain
generalization ability. Specifically, we split shapes via their
primitive-type distributions. Primitive-type distribution re-
veals the ratio of each primitive-type in the shape calcu-
lated based on number of points belonged to each type of
primitive. We first cluster all shapes into 7 clusters by K-
Means++ [1], then merge them into 4 subsets with a rela-
tively large distribution gap across them. Details of each
cluster w.r.t. the average primitive-type distribution over all
shapes, their respective train-test split, and total number of
shapes contained in the cluster are summarized in Table 3.
“Train 1”, “Train 2”, and “Train 3” are all used in the su-
pervision search process and regular training process. In
the supervision search process, such three train splits serve
for distribution-shift simulation to cross-validate the cross-
domain generalization ability of the selected supervision.
In the regular training process, shapes in those three splits
are merged together and further split into train-validation
datasets via a ratio 9:1. The validation set is used for model
selection.

Table 3. Details w.r.t. each cluster of the re-split dataset for the primitive
fitting task. For abbreviations used, “Cluster ID.” refers to “Cluster Index”,
“Dist.” denotes “Distribution”. Primitives in the distribution vector has the
order (Plane, Sphere, Cylinder, Cone).

Split Cluster ID. #Shapes Primitive-type Dist.

Train 1 1 1759 (0.227, 0.043, 0.453, 0.277)
2 2005 (0.540, 0.003, 0.429, 0.028)

Train 2 3 5600 (0.098, 0.056, 0.771, 0.075)

Train 3 4 3944 (0.026, 0.012, 0.944, 0.018)
5 220 (0.067, 0.011, 0.033, 0.890)

Test 6 1474 (0.908, 0.00, 0.067, 0.025)
7 2195 (0.218, 0.166, 0.590, 0.026)

Semantic-based part segmentation. The dataset we use is
the same as the one used in [7]. We only use the finest seg-
mentation level for training and evaluation other than using
all available levels as does in [7].

3.2. Experimental Settings

Supervision search. We set the learning rate to 0.001 with-
out change during the whole stage. For mobility-based part
segmentation, 100 automatic search epochs are conducted.
For primitive fitting and semantic-based part segmentation,
30 automatic search epochs are conducted. For all three
tasks, 4 supervisions sampled and evaluated in each epoch.



The supervision distribution space is optimized in each
epoch. AdaM optimizer is used for segmentation networks
for all three tasks, with β = (0.9, 0.999), ϵ = 10−8, and
weight decay ratio set to 10−4. Batch size is set to 36 for
mobility-based part segmentation task, 2 for primitive fit-
ting and semantic-based part segmentation using DGCNN,
8 those two tasks using PointNet++.

Regular training. We set the initial learning rate to 0.001,
decayed by 0.7 when the model’s performance on the val-
idation set is improved for more than 20 epochs. AdaM
optimizer is used for segmentation networks for all three
tasks, with β = (0.9, 0.999), ϵ = 10−8, and weight de-
cay ratio set to 10−4. For mobility-based part segmenta-
tion networks, 400 epochs are performed with the epoch
that the model achieves the best validation performance
is take for inference. For primitive fitting and semantic-
based part segmentation tasks, 200 epochs are performed
using the same model selection strategy as the one for the
mobility-based part segmentation networks. When using
clustering-based segmentation module, 100 training epochs
are conducted with the model achieves the lowest valida-
tion contrastive-style loss further used for inference. As for
the cross-validation strategy used for estimating the effec-
tiveness of the selected supervision in improving the net-
work’s domain generalization ability, two training datasets
are used for cross-validation for the mobility-based part seg-
mentation task, namely the training dataset and the auxiliary
training dataset. While three training datasets are used for
both primitive fitting and the semantic-based part segmen-
tation. Three clusters out of four clusters are used for cross-
validating in primitive fitting task. Three categories, includ-
ing “Chair”, “Lamp”, and “StorageFurniture”, are used for
cross-validating semantic-based part segmentation.

As for the whole cross-validating process, we train the
network on each train-validation split fold for one single
epoch with intermediate supervisions added based on the
selected supervision feature and the segmentation task re-
lated supervision optimized simultaneously. After that, the
average metric gap across all train-validation splits is taken
as the estimated generalization score for the selected super-
vision feature, which is also used as the reward score for
further supervision feature distribution space update.

Ablation Study. For details of different ablated versions
w.r.t. the supervision space design. “Less operants” de-
notes using a smaller input feature candidate set that is not
expanded. For a set of input part-level matrix cadidates we
used in the full regular searching process where the full ver-
sion of the input feature set that is expanded from input
features, only the set containing part and geometry-aware
matrices formed from input features directly is used in this
version. More specifically, in “Less operants” setting, we
use { Pi, Ni} as the input feature set, while the full version

contains 7 matrices. “Less unary operators” denotes the ver-
sion where only a subset of unary operators is used as the
unary operator set. Compared with the full version listed
in Table 1, the one used in the ablated version is {Identity,
Square, Double, Negative}. “Less binary operators” refers
to the version where only a subset of binary operators is
used as the binary operator set. Compared with the full ver-
sion listed in Table 1, the one used in the ablated version
is {Add, Minus, Multiply}. “Less tree height” means the
maximum height of the operation tree, which is measured
by the number of the connected operation cells. Compared
with the one used in the full version that is set to 3, the
maximum tree height in the ablated version is set to 2.

Models for comparison with HPNet. In the primitive fit-
ting task, we develop two models to compare with HPNet
fairly, considering the clustering-based network architec-
ture used in HPNet that is different from the classification-
based segmentation module used in our default setting to
evaluate AutoGPart . Two models are designed by 1) re-
placing the clustering-based segmentation module used in
HPNet with a classification-based segmentation module,
denoted as “HPNet*”; 2) plug AutoGPart in the first learn-
ing stage of HPNet to search for useful intermediate su-
pervisions that can help the network learn representations
using more invariant features and avoid using shortcut fea-
tures [2], denoted as “AutoGPartHPNet”. Following are some
detailed settings for such two models. For HPNet*, the
network is formed by replacing the clustering-based seg-
mentation module with a classification-based segmentation
module with supervisions added on the first learning stage
kept. The model is trained and evaluated using the same
setting as for our own model. That is, train the model for
200 epochs and select the best validation epoch for further
evaluation. For AutoGPartHPNet, we also adopt a two-stage
training procedure. In the first stage, AutoGPart is applied
to search for useful intermediate supervisions using the gap
of the contrastive-style loss between the training dataset and
the validation dataset across all train-validation splits as the
reward. After the supervision distributions have been opti-
mized, we greedily select what supervisions to use and plug
them in the first learning stage of HPNet by optimizing such
losses and other losses introduced in HPNet simultaneously.
The resulting model optimized in the first learning stage is
then taken for further evaluation using the clustering-based
segmentation module.

Point-cloud processing backbones. PointNet++ used in
our default setting is the same one as that used in SPFN [6].
DGCNN used in the default setting is the same one as that
used in HPNet [13] for representation learning.

Input features. For semantic-based part segmentation task
where per-point normal vector is not contained in input fea-
tures, we estimate a normal vector for each point using



open3d [19]. For primitive fitting, input geometric features
for each point i contain a coordinate vector p⃗i and a ground-
truth normal vector n⃗i. For mobility-based part segmenta-
tion task, input features for each point i are composed of a
coordinate vector p⃗i and a flow vector f⃗i. The flow vector
is estimated according to two input shapes.

Baselines. For domain-agnostic baselines for general do-
main generalization problems, like MixStyle [18], Meta-
learning [5], Gradient Surgery [8], we implement them for
segmentation tasks carefully with reference to their released
code. For mobility-based part segmentation task, Deep
Part Induction [14] is a learning based segmentation net-
work. Although the test dataset used in our model is the
same as the one used in their work, we download the code,
re-implement it using PyTorch, and further train it using
our training dataset where each pair is generated on-the-fly
from inferred meta-data for part mobility information. Note
that the performance reported in the original paper (77.3%
MIoU on the test set) is achieved using several iterations
between flow estimation and part segmentation. The per-
formance of the model using a single iteration is 63.1% as
reported in their work. It is also different from the one we
report, probably due to the different training dataset. The
performance of other baselines such as JLinkage cluster-
ing (JLC) [17] and (Spectral Clustering) SC [11] are taken
from [14] due to the same test datset.

For primitive fitting, SPFN [6] and HPNet [13] are two
task-specific methods to solve the problem. We down-
load the code of SPFN released by the author, carefully re-
implement it using PyTorch and test the model on the same
train-validation-test split as the one used for our model. For
HPNet, we download the official implementation and test
the model’s performance on our train-validation-test split.

For the semantic-based part segmentation, Learning to
Group [7] is a two-stage learning-based segmentation net-
work with a representation learning stage and a rein-
forcement learning based strategy for part segmentation;
SGPN [12] and GSPN [16] are also two task-specific seg-
mentation strategies. WCSeg [4] is a traditional sgementa-
tion method. The performance of those methods are directly
taken from [7] due to the same training and test dataset.

Time consumption. A training epoch for primitive fitting
and semantic-based part segmentation takes the time vary-
ing roughly from 4 minutes to 10 minutes, while roughly
from 1 minute to 3 minutes for the mobility-based part
segmentation task, according to what intermediate super-
visions used. An inference epoch takes about 2 minutes for
primitive fitting and semantic-based part segmentation task,
while about 40 seconds for the mobility-based segmentation
task. On average, AutoGPart triples the train time of a part
segmentation backbone (from 4.4hrs to 13.2hrs).

Software configurations. We use Python 3.8.8 and Py-

Torch 1.9.1 to write the main code framework. Other main
packages used include torch cluster 1.5.9, torch scatter
2.0.7, horovod 0.23.0 for PyTorch, etc.

Hardware configuration. All training experiments, in-
cluding supervision search stage and regular training stage,
are conducted on 8 NVIDIA Geforce RTX 3090 GPUs in
parallel. Experiments for inference stage is conducted on
one single NVIDIA Geforce RTX 3090 GPU.

4. Additional Experimental Results
4.1. Supervision Distribution Space Evolution

In this section, we explore the evolution of the perfor-
mance of the supervision distribution space during the su-
pervision search process on the mobility-based part seg-
mentation task. We take the optimized supervision distri-
bution space at epoch 20,40,60,80,100 and evaluate their
performance. Results are presented in Table 4. As shown
in the table, the performance of the supervision distribution
space has an increasing tendency during the optimization
process, though not exactly monotonous. Such an obser-
vation indicates that: 1) During the optimization process,
the distribution space is gradually optimized to prefer high-
quality supervision features. 2) Both the supervision dis-
tribution space optimization and the supervision selection
strategy contribute to good optimization combination that is
further used in the following evaluation process. The effec-
tiveness of the greedy supervision selection strategy as well
as comparison with other selection process are discussed in
the main paper.

Further, another direction worth exploring is the opti-
mization strategy. We simply adopt a basic reinforcement
learning based strategy to optimize the supervision distri-
bution space, which may not be the optimal choice. Though
our experimental results prove the effectiveness of such
strategy, we did not design and compare other strategies in
this work, more possible optimization methods are worth
further exploring.

Table 4. Comparison of the optimized supervision distribution space
across the supervision search process. The experiment is conducted on
the mobility-based part segmentation task with DGCNN as its backbone.

Epoch 20 40 60 80 100
MIoU 0.696 0.724 0.687 0.733 0.738

4.2. Contrastive Learning based Part Segmentation

Our main experimental results have proved the effective-
ness of HPNet [13] on the primitive fitting task. It is a
carefully designed two-stage framework with a representa-
tion learning network that learns feature representations, pa-
rameters and other geometric features such as normal vec-
tors and further hybrid such learned features for the follow-
ing Mean-Shift clustering module. Such design achieves



impressive performance on the primitive fitting task, with
MIoU performance 79.5%. It is not clear whether such
network architecture is suitable for other two tasks. To
apply them on the mobility-based part segmentation and
semantic-based part segmentation, we abbreviate its first
representation learning stage to only learn per-point repre-
sentations optimized by a contrastive style loss and further
fit the optimized representation to the clustering stage.

We conduct experiments by applying such contrastive
learning based part segmentation strategy to the mobility-
based part segmentation task and the semantic-based part
segmentation task using PointNet++ [10] as the backbone.
Results are summarized in Table 5. It can be inferred that
although such contrastive based segmentation networks can
work well on the primitive fitting task, it cannot get satis-
factory results on the mobility-based part segmentation task
or semantic-based part segmentation task using PointNet++
as the backbone. Possible reasons may include 1) Such net-
work architecture is not a universal one for all segmenta-
tion tasks, considering that it is originally designed for the
primitive fitting task. 2) This network architecture is not
universally suitable for both PointNet++ and DGCNN. For
comparison, our strategy is more universal compared with
the contrastive learning based segmentation strategy.

Table 5. The performance of the contrastive learning based part segmen-
tation networks (“Contrastive”) on the mobility-based part segmentation
task (“Mobility”) and the semantic-based part segmentation task (“Seman-
tic”). “PN++” refers to “PointNet++”. Reported values are performance
of the trained networks on out-of-domain test datsets.

Mobility Semantic
Contrastive 44.0 25.9

AutoGPartPN++ 66.5 33.9

4.3. Part-aware and Geometry-discriminative Su-
pervision Feature Space

In our method, we design the supervision space to be
aware of part-level information by sampling features from
points having the same part labels with the target point.
Moreover, the feature space is made aware of geometric
features by using ground-truth geometric features to con-
struct the input feature set. In this section, we conduct abla-
tion study on the mobility-based part segmentation task to
prove the necessity of making the calculated features aware
of both part labels and geometric features.

Ablating part labels. We conduct an experiment to ablate
part labels in the calculation of supervision features by us-
ing features of points sampled from the neighbourhood of
each point without considering whether they belong to the
same part. Resulting models are denoted as “−Part Labels”
in Table 6.

Ablating geometric features. We conduct an experiment
to ablate geometric features in the supervision feature cal-

Table 6. Ablation study w.r.t. reward function design and supervi-
sion space design. For abbreviations used, “Arch.” refers to “Architec-
ture”; “PN++” denotes “PointNet++”; In/Out-of-dist. refers to In/Out-of-
distribution performance.

Ablation Arch. In-dist. Out-of-dist.
/

DGCNN
83.1 73.8

−Part Labels 82.4 71.3
−Geometric Features 83.9 68.9

culation process by only using part labels from the sampled
points as input features in the supervision feature space. Re-
sulting models are denoted as “−Geometric Features” in Ta-
ble 6.

The results of such ablations are summarized in Table 6.
Such results demonstrate the necessity of including geo-
metric features and part labels in the intermediate super-
vision feature calculation process simultaneously. Further-
more, being aware of geometric features are more important
than including part labels in the supervision feature calcu-
lation process if we compare the performance of the result-
ing models for their respective ablation versions. Moreover,
if we compare the performance of the model “−Geometric
Features” with the model optimized using no intermediate
supervisions, it can be discovered that the ablated version,
where only part labels are involved in the calculation pro-
cess, would result very limited performance improvement.
Possible reasons may include 1) Operators designed for
geometric features are not that suitable to encode part la-
bels; 2) Adding intermediate supervisions by only letting
the model aware of part labels encoded in another form is
not enough to help the model learn more part related cues.
Letting the calculated supervision features aware of part-
level geometric information can help the network learn use-
ful cues defining parts for the part segmentation task, thus
benefiting the networks’ performance better than only using
a part of them.

4.4. Supervision Feature Generation Strategy

In this work, we propose to generating supervision fea-
tures from an operation tree operating on input part-aware
geometric features. No doubt that there are many other
methods that can be used to generate such features from
ground-truth input features for supervision. We explore one
possibility by letting a network consume such input part-
aware geometric features for intermediate ground-truth su-
pervision features. The network is optimized together with
the main network by gradient descent. Resulting models are
denoted as “NN” and the results are summarized in Table 7.
As can be inferred from the table, using a network to gener-
ate ground-truth features for prediction is not a wise choice,
with the performance improvement that can be added on the
original simple segmentation networks very limited. It in-
dicate that, using such simple gradient descent strategy, a



Table 7. Ablation study w.r.t. reward function design and supervision
space design. For abbreviations used, “Arch.” refers to “Architecture”;
“PN++” denotes “PointNet++”; “No Loss” indicates simple segmentation
networks trained without intermediate supervisions; In/Out-of-dist. refers
to In/Out-of-distribution performance.

Ablation Arch. In-dist. Out-of-dist.
/

PN++
87.2 66.5

/ (No Loss) 86.4 61.0
NN 86.5 62.5

/
DGCNN

83.1 73.8
/ (No Loss) 88.3 68.1

NN 89.5 67.0

network cannot “learn” the correct way to generate high-
quality ground-truth features for intermediate supervisions.
This can also prove an effective strategy to use a computing
graph-like operation tree for ground-truth features.

4.5. Experimental Results Details

In this section, we present some details of experimental
results that are not presented in the main paper.

Performance comparison between HPNet and
AutoGPartHPNet. Performance comparison between
HPNet and AutoGPartHPNet on different data clusters is
shown in Figure 1.
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Figure 1. Performance comparison between HPNet and AutoGPartHPNet
on different data clusters.

4.6. Segmentation Results Visualization

In this section, we visualize and present some seg-
mentation results for the mobility-based part segmentation
task and the semantic-based part segmentation task. Point
clouds are normalized into a ball with radius 1.0. Thus the
presented shapes may be different from those used in the
training stage.

Mobility-based part segmentation. Figure 2 and 3 (pre-

sented in next few pages) show the selected segmenta-
tion visualization for the mobility-based part segmenta-
tion task, where “Baseline” denotes “DGCNN” model
using no intermediate supervision while “Ours” denotes
“AutoGPartDGCNN” model using intermediate loss searched
by AutoGPart .

Semantic-based part segmentation. Figure 4 and 5 (pre-
sented in next few pages) show the segmentation results of
AutoGPart on shapes from several test categories for the
semantic-based part segmentation task.

5. Further Discussion
In this work, we propose to automatically find useful in-

termediate supervisions to help with improve the general-
ization ability of 3D part segmentation networks. Although
experiments prove the value of adding intermediate supervi-
sions for improving networks’ cross-domain performance,
the network structure used in current work is still limited
to a single stage end-to-end learning-based network which
does not vary across different segmentation networks. How-
ever, it is valuable to explore how to include the architecture
of segmentation networks into the design space and auto-
matically select suitable network architectures for different
part segmentation tasks. Making the network architecture
flexible can help enlarge the design space, thus including
more highly expressive networks into the search space.

Another line lies in more explorations on other tasks,
not only limited to 3D part segmentation tasks. It is ex-
pected that adding intermediate supervisions a general ap-
proach to prevent network from learning shortcut features
for tasks from a much broader range. However, it is still not
proved and worth further exploration. Moreover, migrat-
ing the research goal from only improving the network’s
cross-domain generalization ability to enhancing both of its
in-distribution and out-of-distribution performance is also a
meaningful direction.
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Figure 2. Mobility-based segmentation results visualization. “Baseline” refers to the segmentation network using DGCNN as its backbone
without adding any intermedaite supervision. “Ours” denotes the model “AutoGPartDGCNN”.
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Figure 3. Mobility-based segmentation results visualization. “Baseline” refers to the segmentation network using DGCNN as its backbone
without adding any intermedaite supervision. “Ours” denotes the model “AutoGPartDGCNN”.
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Figure 4. Semantic-based segmentation results visualization. “G.T” refers to the ground-truth segmentation results. “Pred.” denotes the
model “AutoGPart”.
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Figure 5. Semantic-based segmentation results visualization. “G.T” refers to the ground-truth segmentation results. “Pred.” denotes the
model “AutoGPart”.
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