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A. Details of INS-Conv Network
In this section, we explain the detailed network archi-

tecture of our INS-Conv network in A.1, followed by the
training details in A.2.

A.1. Network Architecture

We follow the similar UNet-like architecture as in [5].
The network architecture is shown in Fig. 1. We describe
the layer configuration in Tab. 1. For each resolution level
i (i from 0 to L, L = 6), the configuration of the ex-
tract, downscale and upscale modules are given respec-
tively, where M controls the channel width of network. We
set M = 32 for the m32 model, and M = 64 for the m64
model.

A.2. Training Details

We generate three different completeness for each scene:
33%, 66%, and 100%, which is measured by the number of
points. We trim the RGBD sequence to generate these par-
tial scenes. Each scene and its partial scenes are put into
the same batch. Our network outputs semantic probability,
instance embedding and uncertainty for each voxel. An off-
set vector pointing to the instance centroid is also predicted,
which we refer to [5]. We use cross-entropy loss to train
the semantic probability, and the discriminative loss [2] and
temporal consistency loss to train the instance embedding.
The weighted BCE loss is used to train the uncertainty term.
The neighbor propagation module is then added to each
INS-SSC layer, on top of the pretrained model. It is trained
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Table 1. Details of layer configuration, where M controls the chan-
nel width of network.

Module Layer K S Cin Cout

fextract
i bn+ssc 3 1 M*(i+1) M*(i+1)

bn+ssc 3 1 M*(i+1) M*(i+1)
resnet addition

fdownscale
i bn+conv 2 2 M*(i+1) M*(i+2)
fupscale
i addition

bn+deconv 2 2 M*(i+1) M*i
channel linear M*i M*i
bn+ssc 3 1 M*i M*i
bn+ssc 3 1 M*i M*i
resnet addition

to minimize the MSE between the last layer features of INS-
Conv and ‘full’ propagation.

B. Implementation Details

In this section, we provide some extra implementation
details. In INS-Conv, for layers that have bias terms, they
are not linear maps. We make a modification to these lay-
ers that we only add the bias value to sites that are pre-
viously inactive. In the instance clustering stage, we per-
form mean-shift clustering on the updated points, and the
distance metric is the Euclidean distance between the pre-
dicted embeddings. For semantic segmentation, we fuse
current predicted semantic labels to global. We maintain a
label and a label weight for each point in the global model.
If the currently predicted label of a point is different from
the global saved label, we decrease the corresponding label
weight, and vice versa. If the label weight is smaller than
zero, we change the global saved label to the currently pre-
dicted label. For the details, please refer to [9]. We set voxel
size to 0.02m in all experiments.
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Notations

Concatenate

Add

SSC: Submanifold Sparse convolution

SC: Sparse convolution

K3S1: Kernel size 3, Stride 1

When inference, replace layers with 
corresponding INS-Conv layers

Figure 1. Network architecture. We use a UNet-like submanifold sparse convolutional network as backbone, and replace the layers with
corresbonding INS-Conv layers in inference stage.

C. More Results
More qualitaive results of online semantic and instance

results on the validation set of ScanNetv2 are provided in
Fig. 2 and Fig. 3. Additionally, per-class semantic mIoU,
per-class instance mAP@50 on ScanNetv2 validation set
and test set are provided in Tab. 2 to 5. The per-class in-
stance mAP@50 results on sceneNN are shown in Tab. 6.
We also provide an online demo of INS-Conv in the at-
tached video, where we integrate the CPU version of INS-
Conv into a CPU-based SLAM system [4]. Only using the
CPU computing power of a portable device, we achieve on-
line inference speed.



Method mIoU bath bed bkshf cab chair cntr curt desk door floor ofurn pic fridg showr sink sofa tabl toil wall wind
Ours-m32 71.5 84.3 79.3 78.7 64.4 90.1 63.6 72.5 63.5 60.4 95.2 55.8 33.8 52.3 74.5 63.3 83.2 74.5 92.8 84.0 63.3
Ours-m64 72.4 87.4 81.2 79.6 67.7 91.0 64.5 74.9 60.8 62.1 95.1 57.8 36.0 52.0 72.2 67.0 83.3 72.3 93.3 85.1 65.2

Table 2. Per-class semantic segmentation results of our method on the ScanNetV2 [1] validation set.

Method mAP@50 bath bed bkshf cab chair cntr curt desk door ofurn pic fridg showr sink sofa tabl toil wind
Ours-m32 57.4 77.4 69.7 53.4 50.3 74.6 30.9 48.5 47.0 45.1 52.3 42.0 44.8 69.7 55.9 69.7 62.5 94.8 45.2
Ours-m64 61.4 80.6 71.4 53.8 52.9 92.3 30.9 55.2 51.7 50.3 61.6 44.4 47.5 74.0 52.6 71.0 66.4 100.0 48.3

Table 3. Per-class instance segmentation results of our method on the ScanNetV2 [1] validation set.

Method mIoU bath bed bkshf cab chair cntr curt desk door floor ofurn pic fridg showr sink sofa tabl toil wall wind
FA [11] (Online) 63.0 60.4 74.1 76.6 59.0 74.7 50.1 73.4 50.3 52.7 91.9 45.4 42.3 55.0 42.0 67.8 68.8 54.4 89.6 79.5 62.7
SV [7] (Online) 63.5 65.6 71.1 71.9 61.3 75.7 44.4 76.5 53.4 56.6 92.8 47.8 27.2 63.6 53.1 66.4 64.5 50.8 86.4 79.2 61.1
SC [3] (Offline) 72.5 64.7 82.1 84.6 72.1 86.9 53.3 75.4 60.3 61.4 95.5 57.2 32.5 71.0 87.0 72.4 82.3 62.8 93.4 86.5 68.3
MK [5] (Offline) 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7

Ours (Online) 71.7 75.1 75.9 81.2 70.4 86.8 53.7 84.2 60.9 60.8 95.3 53.4 29.3 61.6 86.4 71.9 79.3 64.0 93.3 84.5 66.3

Table 4. Semantic segmentation results on the ScanNetV2 [1] test set in terms of mIoU score on 20 classes, using the m64 model.

Method mAP@50 bath bed bkshf cab chair cntr curt desk door ofurn pic fridg showr sink sofa tabl toil wind
PF [9] (Online) 47.8 66.7 71.2 59.5 25.9 55.0 0.0 61.3 17.5 25.0 43.4 43.7 41.1 85.7 48.5 59.1 26.7 94.4 35.9
PG [8] (Offline) 63.6 100.0 76.5 62.4 50.5 79.7 11.6 69.6 38.4 44.1 55.9 47.6 59.6 100.0 66.6 75.6 55.6 99.7 51.3
OS [5] (Offline) 67.2 100.0 75.8 68.2 57.6 84.2 47.7 50.4 52.4 56.7 58.5 45.1 55.7 100.0 75.1 79.7 56.3 100.0 46.7
Ours (Online) 65.7 100.0 76.0 66.7 58.1 86.3 32.3 65.5 47.7 47.3 54.9 43.2 65.0 100.0 65.5 73.8 58.5 94.4 47.2

Table 5. Instance segmentation results on the ScanNetV2 [1] test set in terms of mAP@50 score on 18 classes, using the m64 model.

Method (Offline) mAP@0.5 wall floor cabinet bed chair sofa table desk tv prop
MLS-CRF [10] 12.1 13.9 44.5 0.0 32.9 12.9 0.0 5.7 10.8 0.0 0.8

OccuSeg 47.1 39.0 93.8 5.7 66.7 91.3 8.7 50.0 31.6 76.9 7.14
Ours (Online) 57.6 21.2 88.2 39.9 75.0 89.9 64.8 40.9 43.3 90.2 22.3

Table 6. Instance segmentation results on the SceneNN [6] dataset in terms of mAP@0.5 score of each class, using the m64 model.
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Figure 2. Online semantic and instance results on the validation set of ScanNetv2.
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Figure 3. Online semantic and instance results on the validation set of ScanNetv2.
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