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In this appendix, we provide details omitted in the main
text, including:
e Section A: Illustration and more details about the pro-
posed Entropy Preserving Weight Regularization.
e Section B: Visualization of learned parameters.
e Section C: The results of keeping down-sampling layers
to be real-valued in ResNet structures.

A. Entropy Preserving Weight Regularization
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Figure A. Illustration of the proposed entropy preserving weight
regularization.

The weight regularization function proposed in the main
paper: W™ = 22(::11) %W" aims to rescale the real-
valued weights for preserving information entropy in the
corresponding quantized weights. Specifically, %
scales the W" to have the absolute mean value equal to
1. When the real-valued weights are initialized as uni-

formly and symmetrically distributed [1,2] Ly will
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be evenly distributed in [—2,2]. The factor — fur-
ther spread the real-valued weight distribution to [—23,—:,

23—_1] , for which, the corresponding quantized weights after
the quantization function Fiy =round((Clip(-1, W™’ 1)+
1) x %) X 72— —1 will be approximately uniformly quan-
tized to 2™ levels as shown in Fig. A. During training, the
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real-valued weight distributions are not always uniform,
in which case, regularization helps to better distribute the
weights. After training, this regularization factor can be cal-
culated offline from the optimized weights and be absorbed
by the BatchNorm layers (if used) after the quantized con-
volutional layers as mentioned in [3].

B. Learned Parameters Visualization
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Figure B. Quantized weights and learnable thresholds visualiza-
tion

We visualize the optimized weights in the trained 2-bit
ResNet-18. As shown in Fig. B, many 3 x 3 weight ma-
trices learn the same value in the baseline method, which
can hardly extract useful features. In contrast, this phe-
nomenon is much rarer with the proposed weight regular-
ization. Specifically, for 2-bit case, 4.37% of quantized 3 x 3
weight matrices contain the same values in baseline method,
while this number is reduced to 1.69% in our method. Fur-
ther, in Fig. B (b), the learned threshold parameters in the
quantized ResNet-18 network have clear patterns. The pa-
rameters in first convolutional layers of the residual blocks
(i.e., odd rows in Fig. B (b)) often have larger values in the
threshold intervals a, and smaller values in the first scaling
factors 3;. We deem it is because the real-valued activations
in these layers are the summation of the residual connection
and the previous layer output, thus are larger in magnitude,
for which, larger a and smaller 3, are learned to better rep-
resent these activations in fixed bits.



C. Results without Quantizing Downsampling
Layers

In previous quantization works, there is a practice [4, 5]
of keeping the down-sampling layers to be full-precision
and quantizing the rest of the convolutional layers. We fol-
low these studies and conduct experiments on ResNet. As
shown in Table A, for lower bits, real-valued 1x1 down-
sampling layers can boost the accuracy for ~0.3%, while
this effect becomes marginal for higher bits.

Table A. Accuracy comparison of quantizing the downsampling
layers in ResNet. Both weights and activations are quantized to
2-bit 3-bit or 4-bit. * denotes keeping the weights and activations
to be full-precision in 1x1 downsampling layers and quantizing
all the remaining convolutional and fully-connected layers except
the first and the last one.

2-bit 3-bit 4-bit

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
N2UQ 694 884 719 905 729 909
N2UQ* 69.7 88.9 721 90.5 731 91.2
N2UQ 733 912 752 923 760 928
N2UQ* 734 91.3 753 924 76.1 928
N2UQ 75.8 923 775 936 78.0 939
N2UQ* 764 929 77.6 93.7 78.0 94.0

Network Method

ResNet-18

ResNet-34

ResNet-50
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