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In this appendix, we provide details omitted in the main
text, including:
• Section A: Illustration and more details about the pro-
posed Entropy Preserving Weight Regularization.
• Section B: Visualization of learned parameters.
• Section C: The results of keeping down-sampling layers
to be real-valued in ResNet structures.

A. Entropy Preserving Weight Regularization
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Figure A. Illustration of the proposed entropy preserving weight
regularization.

The weight regularization function proposed in the main
paper: W r ′ = 2(n−1)

2n−1
|W r|

||W r||l1W
r aims to rescale the real-

valued weights for preserving information entropy in the
corresponding quantized weights. Specifically, |W r|

||W r||l1
scales the W r to have the absolute mean value equal to
1. When the real-valued weights are initialized as uni-
formly and symmetrically distributed [1,2], |W r|

||W r||l1W
r will

be evenly distributed in [−2, 2]. The factor 2(n−1)

2n−1 fur-
ther spread the real-valued weight distribution to [− 2n

2n−1 ,
2n

2n−1 ], for which, the corresponding quantized weights after
the quantization function FQ=round((Clip(−1, W r ′, 1)+
1)× 2n−1

2 )× 2
2n−1−1 will be approximately uniformly quan-

tized to 2n levels as shown in Fig. A. During training, the

real-valued weight distributions are not always uniform,
in which case, regularization helps to better distribute the
weights. After training, this regularization factor can be cal-
culated offline from the optimized weights and be absorbed
by the BatchNorm layers (if used) after the quantized con-
volutional layers as mentioned in [3].

B. Learned Parameters Visualization
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Figure B. Quantized weights and learnable thresholds visualiza-
tion

We visualize the optimized weights in the trained 2-bit
ResNet-18. As shown in Fig. B, many 3 × 3 weight ma-
trices learn the same value in the baseline method, which
can hardly extract useful features. In contrast, this phe-
nomenon is much rarer with the proposed weight regular-
ization. Specifically, for 2-bit case, 4.37% of quantized 3×3
weight matrices contain the same values in baseline method,
while this number is reduced to 1.69% in our method. Fur-
ther, in Fig. B (b), the learned threshold parameters in the
quantized ResNet-18 network have clear patterns. The pa-
rameters in first convolutional layers of the residual blocks
(i.e., odd rows in Fig. B (b)) often have larger values in the
threshold intervals a, and smaller values in the first scaling
factors β1. We deem it is because the real-valued activations
in these layers are the summation of the residual connection
and the previous layer output, thus are larger in magnitude,
for which, larger a and smaller β1 are learned to better rep-
resent these activations in fixed bits.
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C. Results without Quantizing Downsampling
Layers

In previous quantization works, there is a practice [4, 5]
of keeping the down-sampling layers to be full-precision
and quantizing the rest of the convolutional layers. We fol-
low these studies and conduct experiments on ResNet. As
shown in Table A, for lower bits, real-valued 1x1 down-
sampling layers can boost the accuracy for ∼0.3%, while
this effect becomes marginal for higher bits.

Table A. Accuracy comparison of quantizing the downsampling
layers in ResNet. Both weights and activations are quantized to
2-bit 3-bit or 4-bit. * denotes keeping the weights and activations
to be full-precision in 1×1 downsampling layers and quantizing
all the remaining convolutional and fully-connected layers except
the first and the last one.

Network Method 2-bit 3-bit 4-bit
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-18 N2UQ 69.4 88.4 71.9 90.5 72.9 90.9
N2UQ* 69.7 88.9 72.1 90.5 73.1 91.2

ResNet-34 N2UQ 73.3 91.2 75.2 92.3 76.0 92.8
N2UQ* 73.4 91.3 75.3 92.4 76.1 92.8

ResNet-50 N2UQ 75.8 92.3 77.5 93.6 78.0 93.9
N2UQ* 76.4 92.9 77.6 93.7 78.0 94.0
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