Reduce Information Loss in Transformers for Pluralistic Image Inpainting
Supplementary Material

Qiankun Liu'* Zhentao Tan'
Yinpeng Chen?

Dongdong Chen?
Mengchen Liu?

Qi Chu!" Xiyang Dai?

Lu Yuan? Nenghai Yu'

"University of Science and Technology of China
*Microsoft Cloud + Al
{liugk3, tzt}@mail.ustc.edu.cn, {gchu, ynh}@ustc.edu.cn

cddlyf@gmail.com, {xiyang.dai, yiche, mengcliu, luyuan}@microsoft.com

1. Overview

In this supplementary material, we provide more imple-
mentation details, experimental results and analysis, includ-

ing:
¢ training of P-VQVAE (Section 2).
» sampling strategy for image inpainting (Section 3).
¢ network architecture of different models (Section 4).
¢ more results on different datasets (Section 5).

* more discussions on PUT (Section 6), including the
inference speed of PUT and some artifacts in inpainted
results.

2. Training of P-VQVAE

Given an image x and two different masks m and m’,
the input of P-VQVAE is X = x ® m. The overall loss for
the training of P-VQVAE is:

Luae = Lrec(®, %)+ || sglf] 0 & |13 +5 || sgle] o IIS{
ey
where f = £ (%) denotes the feature vectors extracted by the
encoder and & is quantized vectors for f. &7 = DE,m®
m’, X ® m’) is the reconstructed image and sg|-| refers to a
stop-gradient operation that blocks gradients from flowing
into its argument.

The last term in Eq. (1) is the so-called commitment
loss [15] with weighting factor 5 = 0.25. It is responsible
for passing gradient information from decoder to encoder.
The second term in Eq. (1) is the codebook loss for the
optimization of latent vectors. Following previous works
in [13,15], we replace the second term with the Exponential

“Work done during an internship at Microsoft
Corresponding author

Algorithm 1: Sampling Strategy for Pluralistic Im-
age Inpainting

Input : % € REXWX3: masked image needs to be inpainted
m € {0, 1}7XWX3: the mask indicating whether a
pixel is masked/missing or not
IC: top-/C for Gibbs sampling

Output: %! € REXWX3: the inpainted image

1 Stepl: get indicator mask, feature vectors, quantized tokens
2 mte{0,1} T caleulated from m
3 FeRTXTXC Lg(x)
2 H W & .
4 teN+*%" < I(f, e e, m) // Sec. 3.1 in the paper
s tlt
6 Step2: sample tokens for masked patches
7 while >, ;my} . < £V do

r2
H W -
8 p € [0,1] 7 X XX « T(F) // probabilities, Sec. 3.2 in
the paper
9 // select the patch with maximum probability
10 i',j" < argmax; ; (1 — mf]) - max Pj j,:
11 // sample the token from the top-C elements in P,/ ;7 .
12 k < GIBBSSAMPLING(p;/ j/ ., K)
13 // update some variables
14 g{’,j’ < k, mj,y]., +— 1, f‘i/,j/ — €

15 Step3: reconstruct the image
16 &l €« VECTORRETRIEVAL(E!, e)
17 %+ D@, m,%)

18 Return %/

Moving Average (EMA) to optimize e and €’. Specifically,
at each iteration ¢, the latent vector ey, is updated as:

ny =m oy s (1-9),

ng .
&, =g txy+ 1 (f); x (1 -,)
J
el = Z—’;,

k

where f* denotes the set of feature vectors in f that assigned
to ey, and ny, is the number of feature vectors in £*. v is the

Module | Layer Parameter size / Stride Output size
Linear 192 x 256 32 x 32 x 256
Linear 256 x 128
P-Enc ResBlock (198 % 256) x 8 32 x 32 x 256
Linear 256 x 256 32 x 32 x 256
e 512 x 256 -
D-Codes | — 512 X 256 -
Conv 256 X 3 X 3 x 256/1 32 x 32 x 256
Conv 256 x 3 x 3 x 128/1
ResBlock (128 X 3 X 3 x 256/1) x 8 3232 x256
Deconv 256 x 4 X 4 X 256/2 64 x 64 x 256
(Conv) (256 x 4 x 4 x 256/2) (32 x 32 x 256)
MSG-Dec| Deconv 256 x 4 x 4 X 128/2 128 x 128 x 128
(Conv) (128 x 4 x 4 x 256/2) (64 x 64 x 256)
Deconv 128 X 4 X 4 X 64/2 256 x 256 x 64
(Conv) (64 x 4 x 4 x 128/2) (128 x 128 x 128)
Conv' 64 x 3 x3x3/1 256 x 256 x 3
(Conv) (3x3x3x64/1) (256 x 256 x 64)

Table 1. Architecture of P-VQVAE. For MSG-Dec, the brack-
eted layers in the bottom four rows denotes the layers in reference
branch. Except the convolution layer marked by f, all the other
layers are followed by a ReLU [9] activation function. The struc-
ture of Linear and Conv ResBlocks are shown in Figure 1.

Module | Layer Parameter size / Stride Output size
Conv 3x4x4x64/2 128 x 128 x 64
Conv 64 x 4 x4 x128/2 64 x 64 x 128
Conv-Enc Conv 128 x 4 x 4 X 256/2 32 x 32 x 256
Conv 256 x 3 x 3 x 128/1
ResBlock (128 x 3 x 3 x 256/1) * 832 % 32X 256
Conv 256 X 3 X 3 X 256 32 X 32 x 256

Table 2. Architecture of the encoder in P-VQVAE®°"". The learn-
able codebook and decoder are the same with those in P-VQVAE
in Table 1. All layers are followed by a ReL.U [9] activation func-
tion.

decay parameter with the value between 0 and 1. We set
~ = 0.99 in all our experiments.

The first term in Eq. (1) is the reconstruction loss and
Lrec(+,) is the function to get the difference between the
inputted and reconstructed images. It consists of five parts,
including L1 loss between the pixel values in two images
(denoted as Ly;z;) and the gradients of two images (de-
noted as Lgq4), the adversarial loss [5] L44,, as well as the
perceptual loss [7] Lperc and style loss [4] Lgy1. between
the two images. The design of the last three losses are in-
spired by the work in [10]. In the following, we describe
the aforementioned losses in detail. Among them:

£pi:vel = M(|)}6)ER|)7 (3)

Lyraa = M(|grad[®] © grad[x])), 4)

where M(-) refers to a mean-value operation, grad|] is the
function calculating the gradient of the given image.
The adversarial loss L4, is computed with the help of a

Dataset n' | h D D’ Param.
FFHQ [¢] 30 8 512 64 95.0M
Places2 [18] 35 8 512 64 110.7M
ImageNet [2] 35 8 1024 128 441.7M

Table 3. UQ-Transformer with different model sizes for different
datasets. n’ and h are the number of transformer block and atten-
tion head. D is the dimensionality of feature vectors that before
and after each transformer block. D’ is the dimensionality of fea-
ture vector in each attention head.

discriminator network D gy (+):

['adv = _M(log[l O Dadv (iR)]) - M(log[padv (i)])’
)
where log[-] denotes element-wise logarithm operation. The
architecture of the discriminator network is the same with
that in [10].
The conceptual loss L., and style loss L. are com-
puted based on the activation maps from VGG-19 [14]:

Lperc

Loere =) M(1d1(%) © &%) (©)
l

Lstyle

Loyie = Y MG(ai(%) ©G(a(x)) D
l

where ¢;(-) corresponds to different layers in VGG-19
[14], G(-) denotes the function that gets the Gram matrix
of its argument. For Lyere and Lgyyie, We set Lpere =
{relul_1,relu2_1, relu3d_1, relud_1,relu5_1} and Lye . =
{relu2_2,relu3d_4,relud 4, relu5.2}. The overall recon-
struction loss is:

ACrec = Epizel +)\g‘cgrad +)\aﬁadv

3
+)\p»cperc +)\sﬁstyle

In our implementation, we set Ay = 5, A, = 0.1, A, = 0.1

and A\, = 250.

3. Sampling Strategy for Image Inpainting

The overall procedure can be divided into three steps:
1) get the feature vectors f from the masked image X us-
ing encoder and get the tokens t by quantizing f with latent
vectors in dual-codebook. The tokens for masked patches
are not required; 2) get the tokens for masked patches us-
ing transformer. Note that the tokens are iteratively sam-
pled with Gibbs sampling following previous transformer-
based works [3, 11, 12]; 3) retrieve quantized vectors el
from codebook e based on the tokens and reconstruct the
inpainted image %’ using decoder by referencing to masked
image X. The detailed sampling strategy is shown in Algo-
rithm 1.

Conv ResBlock

Conv — Conv

Linear ResBlock
Linear —> Linear

(2) (b)

Transformer Block
2 S MLP)
2l H— ./ Layer 1_ . . !
=> Linear = Linear
Norm MsA 7 N Norm 1} :?E

Figure 1. Architecture of different blocks. For Linear and Conv
ResBlocks, each layer is followed by a ReLU [9] activation func-
tion. For transformer block, there is a GELU [0] activation
function between the two linear layers. MSA: Multi-head Self-
Attention. MLP: Multi-Layer Perceptron.

4. Network Architecture
4.1. Auto-Encoder

For different datasets, we use P-VQVAE with the same
model size, and the architecture of our default P-VQVAE is
shown in Table 1. The structure of Linear and Conv Res-
Blocks are shown in Figure 1 (a) and (b). In the paper,
Section 4.3, several models are designed to show the effec-
tiveness of different components in our method, including
PUTee™, PUT®®e, PUT?e, PUT420 and PUT'X. The
auto-encoders in the last two models are the same with our
default P-VQVAE. However, the auto-encoders in PUT<™
, PUT® "¢ and PUT™-"°f are different. For the auto-encoder
in PUT®°™ (denoted as P-VQVAE®°""), all the linear layers
in the encoder are replaced with convolution layers, and the
input image is processed in a sliding window manner. Other
modules in P-VQVAE®™ are the same with those in P-
VQVAE. The architecture of encoder in P-VQVAE®"™" (de-
noted as Conv-Enc) is shown in Table 2. The architecture
of the auto-encoder in PUT®"® is the same with P-VQVAE,
except only one codebook e is used for training and testing.
While for the auto-encdoer in PUT™*f it can be obtained
from P-VQVAE by removing the reference branch in de-
coder.

4.2. Transformer

The architecture of transformer block is depicted in Fig-
ure 1 (c). There are several (denoted as n') successive trans-
former blocks in UQ-Transformer. Within each transformer
block, the input features will be enhanced by self-attention.
Formally, let f € R > be the input of transformer
block. At the b-th transformer block, the feature vectors

Datasets
Models FFHQ [8] | Places2 [18] | ImageNet [2]
UQ-Transformer
(# tokens/second) 37.138 32.048 17.186
P-VQVAE
(# images/second) 62.949

Table 4. Inference speed of different models. Tested on RTX 3090.
The time consumption of P-VQVAE includes extracting feature
vectors from image, quantizing feature vectors to latent vectors,
and reconstructing the input image.

are processed as:

Fr~1 =71 + MSA(LN(E"1)),

- B 9
o = £°1 + MLP(LN(f* 1)), ®

where LN(+), MLP(-), MSA(+) denote layer normalization
[1], multi-layer perceptron and multi-head self-attention re-

spectively. More specifically, given input f € R XD ,
MSA(-) could be formated as:
fwl)(fw!)7 ,
h; = softmax 4) (fwd),

MSA(f) = [ho; hy;...;hy 1w,

. . ; . ’
where h is the number of head, wj, wi,wi € RP*D",

w, € R"P'%D are the learnable parameters. [;...;] is the
operation that concatenates the given arguments along the
last dimension. By changing the values of h, D, D" and n’,
we can easily scale the size of UQ-Transformer.

We use UQ-Transformer with different model sizes for
different datasets, which are shown in Table 3. As a re-
minder, the configuration of transformers are the same with
those in ICT [17].

5. More Results

We show more qualitative comparisons for FFHQ [8] (
Figure 3), Places2 [18] (Figure 4) and ImageNet [2] (Fig-
ure 5 and Figure 6).

6. More Discussions

Inference speed. As mentioned in Section 5 in the paper,
the main limitation of PUT is the inference speed, which
is also a common issue of existing transformer-based auto-
regressive methods [3, 12, 16, 17]. Here we present the in-
ference speed of PUT in Table 4. Note that the time con-
sumption of inpainting a masked image depends on the area
of masked regions.

Artifacts. We experimentally find that there sometimes
contain some artifacts in the generated results of PUT, as

Input PUT1 PUT 2

Figure 2. Results with artifacts. Top: color distortion. Bottom:
black regions. Please pay attention to the contents in yellow rect-
angles.

shown in Figure 2. These artifacts can be divided into two
categories. 1) Color distortion: the color of generated con-
tents my not be consistent with the color of provided con-
tents in the image. 2) Black region: PUT may produce black
regions if the provided masked image contain lots of black
pixels.

PUT (Ours) 2 PUT (Ours) 3

R

 «

¢

PUT (Ours) 3

PUT (Ours) 2

ICT1 ICT 2 ICT3 PUT (Ours) 1

Figure 3. Qualitative comparisons between different methods on FFHQ [8].

PUT (Ours) 1

PUT (Ours) 1 PUT (Ours) 2

GT ICT1 ICT2 ICT3 PUT (Ours) 1 PUT (Ours) 2 PUT (Ours) 3

Figure 4. Qualitative comparisons between different methods on Places2 [18].

P O%
1 (s4n0) 1nd

¢ (sin0) Lnd

Figure 5. Qualitative comparisons between different methods on ImageNet [2].

PUT (Ours) 1

PUT (Ours) 2

Figure 6. Qualitative comparisons between different methods on ImageNet [2].

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 3

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009. 2, 3,7, 8
Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12873-12883, 2021. 2, 3
Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414-2423, 2016. 2

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 2

Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 3
Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694-711.
Springer, 2016. 2

Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4401-4410, 2019. 2, 3,
5

Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Icml, 2010. 2, 3
Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and
Mehran Ebrahimi. Edgeconnect: Structure guided image
inpainting using edge prediction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
Workshops, pages 0-0, 2019. 2

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAl blog, 1(8):9, 2019. 2
Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. arXiv
preprint arXiv:2102.12092, 2021. 2, 3

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generat-
ing diverse high-fidelity images with vg-vae-2. In Advances
in neural information processing systems, pages 14866—
14876, 2019. 1

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 6309-6318,
2017. 1

(16]

(17]

(18]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998-6008, 2017. 3
Ziyu Wan, Jingbo Zhang, Dongdong Chen, and Jing Liao.
High-fidelity pluralistic image completion with transform-
ers. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 4692-4701, 2021. 3

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE transactions on pattern analysis
and machine intelligence, 40(6):1452-1464, 2017. 2, 3, 6

