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1. Overview
In this supplementary material, we provide more imple-

mentation details, experimental results and analysis, includ-
ing:

• training of P-VQVAE (Section 2).

• sampling strategy for image inpainting ( Section 3).

• network architecture of different models (Section 4).

• more results on different datasets (Section 5).

• more discussions on PUT (Section 6), including the
inference speed of PUT and some artifacts in inpainted
results.

2. Training of P-VQVAE
Given an image x and two different masks m and m′,

the input of P-VQVAE is x̂ = x ⊗m. The overall loss for
the training of P-VQVAE is:

Lvae = Lrec(x̂, x̂
R)+ ‖ sg[̂f ]	 ê ‖22 +β ‖ sg[ê]	 f̂ ‖22,

(1)
where f̂ = E(x̂) denotes the feature vectors extracted by the
encoder and ê is quantized vectors for f̂ . x̂R = D(ê,m ⊗
m′, x̂⊗m′) is the reconstructed image and sg[·] refers to a
stop-gradient operation that blocks gradients from flowing
into its argument.

The last term in Eq. (1) is the so-called commitment
loss [15] with weighting factor β = 0.25. It is responsible
for passing gradient information from decoder to encoder.
The second term in Eq. (1) is the codebook loss for the
optimization of latent vectors. Following previous works
in [13,15], we replace the second term with the Exponential
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Algorithm 1: Sampling Strategy for Pluralistic Im-
age Inpainting

Input : x̂ ∈ RH×W×3: masked image needs to be inpainted
m ∈ {0, 1}H×W×3: the mask indicating whether a
pixel is masked/missing or not
K: top-K for Gibbs sampling

Output: x̂I ∈ RH×W×3: the inpainted image
1 Step1: get indicator mask, feature vectors, quantized tokens

2 m↓ ∈ {0, 1}
H
r
×W

r
×1: calculated from m

3 f̂ ∈ R
H
r
×W

r
×C ← E(x̂)

4 t̂ ∈ N
H
r
×W

r ← I(f̂ , e, e′,m↓) // Sec. 3.1 in the paper
5 t̂I ← t̂
6 Step2: sample tokens for masked patches
7 while

∑
i,j m

↓
i,j < HW

r2
do

8 p̂ ∈ [0, 1]
H
r
×W

r
×K ← T (f̂) // probabilities, Sec. 3.2 in

the paper
9 // select the patch with maximum probability

10 i′, j′ ← argmaxi,j(1−m↓i,j) ·max p̂i,j,:

11 // sample the token from the top-K elements in p̂i′,j′,:

12 k ← GIBBSSAMPLING(p̂i′,j′,:,K)
13 // update some variables
14 t̂I

i′,j′ ← k, m↓
i′,j′ ← 1, f̂i′,j′ ← ek

15 Step3: reconstruct the image
16 êI ∈← VECTORRETRIEVAL(̂tI , e)

17 x̂I ← D(êI ,m, x̂)

18 Return x̂I

Moving Average (EMA) to optimize e and e′. Specifically,
at each iteration t, the latent vector ek is updated as:

ntk = nt−1k ∗ γ + nk ∗ (1− γ),

ēt
k = ēt−1

k ∗ γ +
nk∑
j

(f̂k)j ∗ (1− γ),

et
k =

ēt
k

nt
k
,

(2)

where f̂k denotes the set of feature vectors in f̂ that assigned
to ek and nk is the number of feature vectors in f̂k. γ is the
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Module Layer Parameter size / Stride Output size

P-Enc

Linear 192× 256 32× 32× 256
Linear

ResBlock

(
256× 128
128× 256

)
× 8 32× 32× 256

Linear 256× 256 32× 32× 256

D-Codes e 512× 256 -
e′ 512× 256 -

MSG-Dec

Conv 256× 3× 3× 256/1 32× 32× 256
Conv

ResBlock

(
256× 3× 3× 128/1
128× 3× 3× 256/1

)
× 8 32× 32× 256

Deconv
(Conv)

256× 4× 4× 256/2
(256× 4× 4× 256/2)

64× 64× 256
(32× 32× 256)

Deconv
(Conv)

256× 4× 4× 128/2
(128× 4× 4× 256/2)

128× 128× 128
(64× 64× 256)

Deconv
(Conv)

128× 4× 4× 64/2
(64× 4× 4× 128/2)

256× 256× 64
(128× 128× 128)

Conv†

(Conv)
64× 3× 3× 3/1

(3× 3× 3× 64/1)
256× 256× 3

(256× 256× 64)

Table 1. Architecture of P-VQVAE. For MSG-Dec, the brack-
eted layers in the bottom four rows denotes the layers in reference
branch. Except the convolution layer marked by †, all the other
layers are followed by a ReLU [9] activation function. The struc-
ture of Linear and Conv ResBlocks are shown in Figure 1.

Module Layer Parameter size / Stride Output size

Conv-Enc

Conv 3× 4× 4× 64/2 128× 128× 64
Conv 64× 4× 4× 128/2 64× 64× 128
Conv 128× 4× 4× 256/2 32× 32× 256
Conv

ResBlock

(
256× 3× 3× 128/1
128× 3× 3× 256/1

)
× 8 32× 32× 256

Conv 256× 3× 3× 256 32× 32× 256

Table 2. Architecture of the encoder in P-VQVAEconv. The learn-
able codebook and decoder are the same with those in P-VQVAE
in Table 1. All layers are followed by a ReLU [9] activation func-
tion.

decay parameter with the value between 0 and 1. We set
γ = 0.99 in all our experiments.

The first term in Eq. (1) is the reconstruction loss and
Lrec(·, ·) is the function to get the difference between the
inputted and reconstructed images. It consists of five parts,
including L1 loss between the pixel values in two images
(denoted as Lpixel) and the gradients of two images (de-
noted as Lgrad), the adversarial loss [5] Ladv , as well as the
perceptual loss [7] Lperc and style loss [4] Lstyle between
the two images. The design of the last three losses are in-
spired by the work in [10]. In the following, we describe
the aforementioned losses in detail. Among them:

Lpixel =M(|x̂	 x̂R|), (3)

Lgrad =M(|grad[x̂]	 grad[x̂R]|), (4)

whereM(·) refers to a mean-value operation, grad[·] is the
function calculating the gradient of the given image.

The adversarial loss Ladv is computed with the help of a

Dataset n′ h D D′ Param.
FFHQ [8] 30 8 512 64 95.0M

Places2 [18] 35 8 512 64 110.7M
ImageNet [2] 35 8 1024 128 441.7M

Table 3. UQ-Transformer with different model sizes for different
datasets. n′ and h are the number of transformer block and atten-
tion head. D is the dimensionality of feature vectors that before
and after each transformer block. D′ is the dimensionality of fea-
ture vector in each attention head.

discriminator network Dadv(·):

Ladv = −M(log[1	Dadv(x̂
R)])−M(log[Dadv(x̂)]),

(5)
where log[·] denotes element-wise logarithm operation. The
architecture of the discriminator network is the same with
that in [10].

The conceptual loss Lperc and style loss Lstyle are com-
puted based on the activation maps from VGG-19 [14]:

Lperc =

Lperc∑
l

M(|φl(x̂)	 φl(x̂R)|) (6)

Lstyle =

Lstyle∑
l

M(|G(φl(x̂))	 G(φl(x̂R))|) (7)

where φl(·) corresponds to different layers in VGG-19
[14], G(·) denotes the function that gets the Gram matrix
of its argument. For Lperc and Lstyle, we set Lperc =
{relu1 1, relu2 1, relu3 1, relu4 1, relu5 1} and Lperc =
{relu2 2, relu3 4, relu4 4, relu5 2}. The overall recon-
struction loss is:

Lrec = Lpixel + λgLgrad + λaLadv

+ λpLperc + λsLstyle

(8)

In our implementation, we set λg = 5, λa = 0.1, λp = 0.1
and λs = 250.

3. Sampling Strategy for Image Inpainting
The overall procedure can be divided into three steps:

1) get the feature vectors f̂ from the masked image x̂ us-
ing encoder and get the tokens t̂ by quantizing f̂ with latent
vectors in dual-codebook. The tokens for masked patches
are not required; 2) get the tokens for masked patches us-
ing transformer. Note that the tokens are iteratively sam-
pled with Gibbs sampling following previous transformer-
based works [3, 11, 12]; 3) retrieve quantized vectors êI

from codebook e based on the tokens and reconstruct the
inpainted image x̂I using decoder by referencing to masked
image x̂. The detailed sampling strategy is shown in Algo-
rithm 1.
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Figure 1. Architecture of different blocks. For Linear and Conv
ResBlocks, each layer is followed by a ReLU [9] activation func-
tion. For transformer block, there is a GELU [6] activation
function between the two linear layers. MSA: Multi-head Self-
Attention. MLP: Multi-Layer Perceptron.

4. Network Architecture

4.1. Auto-Encoder

For different datasets, we use P-VQVAE with the same
model size, and the architecture of our default P-VQVAE is
shown in Table 1. The structure of Linear and Conv Res-
Blocks are shown in Figure 1 (a) and (b). In the paper,
Section 4.3, several models are designed to show the effec-
tiveness of different components in our method, including
PUTconv, PUTone, PUTno ref , PUTqua0 and PUTtok. The
auto-encoders in the last two models are the same with our
default P-VQVAE. However, the auto-encoders in PUTconv

, PUTone and PUTno ref are different. For the auto-encoder
in PUTconv (denoted as P-VQVAEconv), all the linear layers
in the encoder are replaced with convolution layers, and the
input image is processed in a sliding window manner. Other
modules in P-VQVAEconv are the same with those in P-
VQVAE. The architecture of encoder in P-VQVAEconv (de-
noted as Conv-Enc) is shown in Table 2. The architecture
of the auto-encoder in PUTone is the same with P-VQVAE,
except only one codebook e is used for training and testing.
While for the auto-encdoer in PUTno ref , it can be obtained
from P-VQVAE by removing the reference branch in de-
coder.

4.2. Transformer

The architecture of transformer block is depicted in Fig-
ure 1 (c). There are several (denoted as n′) successive trans-
former blocks in UQ-Transformer. Within each transformer
block, the input features will be enhanced by self-attention.
Formally, let f̄ ∈ R

HW
r2
×D be the input of transformer

block. At the b-th transformer block, the feature vectors

Models
Datasets

FFHQ [8] Places2 [18] ImageNet [2]

UQ-Transformer
(# tokens/second) 37.138 32.048 17.186

P-VQVAE
(# images/second) 62.949

Table 4. Inference speed of different models. Tested on RTX 3090.
The time consumption of P-VQVAE includes extracting feature
vectors from image, quantizing feature vectors to latent vectors,
and reconstructing the input image.

are processed as:

f̃ b−1 = f̄ b−1 +MSA(LN(f̄b−1)),

f̄ b = f̃ b−1 +MLP(LN(f̃ b−1)),
(9)

where LN(·), MLP(·), MSA(·) denote layer normalization
[1], multi-layer perceptron and multi-head self-attention re-
spectively. More specifically, given input f ∈ R

HW
r2
×D,

MSA(·) could be formated as:

hj = softmax(
(fwj

q)(fw
j
k)

T

√
D′

)(fwj
v),

MSA(f) = [h0;h1; ...;hh−1]wo,

(10)

where h is the number of head, wj
q,w

j
k,w

j
v ∈ RD×D′

,
wo ∈ RhD′×D are the learnable parameters. [·; ...; ·] is the
operation that concatenates the given arguments along the
last dimension. By changing the values of h,D,D′ and n′,
we can easily scale the size of UQ-Transformer.

We use UQ-Transformer with different model sizes for
different datasets, which are shown in Table 3. As a re-
minder, the configuration of transformers are the same with
those in ICT [17].

5. More Results
We show more qualitative comparisons for FFHQ [8] (

Figure 3), Places2 [18] ( Figure 4) and ImageNet [2] (Fig-
ure 5 and Figure 6).

6. More Discussions
Inference speed. As mentioned in Section 5 in the paper,
the main limitation of PUT is the inference speed, which
is also a common issue of existing transformer-based auto-
regressive methods [3, 12, 16, 17]. Here we present the in-
ference speed of PUT in Table 4. Note that the time con-
sumption of inpainting a masked image depends on the area
of masked regions.

Artifacts. We experimentally find that there sometimes
contain some artifacts in the generated results of PUT, as



PUT 1

Input PUTconv PUTone

PUTtok PUTqua0 PUT 2 PUT 3

502 852083 724

782124 284

292 380 791667

PUTno_ref

Input

Artifacts

PUT 1 PUT 2GT

Figure 2. Results with artifacts. Top: color distortion. Bottom:
black regions. Please pay attention to the contents in yellow rect-
angles.

shown in Figure 2. These artifacts can be divided into two
categories. 1) Color distortion: the color of generated con-
tents my not be consistent with the color of provided con-
tents in the image. 2) Black region: PUT may produce black
regions if the provided masked image contain lots of black
pixels.
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Figure 3. Qualitative comparisons between different methods on FFHQ [8].
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Figure 4. Qualitative comparisons between different methods on Places2 [18].
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