
Reduce Information Loss in Transformers for Pluralistic Image Inpainting
Supplementary Material

Qiankun Liu1* Zhentao Tan1 Dongdong Chen2 Qi Chu1† Xiyang Dai2

Yinpeng Chen2 Mengchen Liu2 Lu Yuan2 Nenghai Yu1

1University of Science and Technology of China
2Microsoft Cloud + AI

{liuqk3, tzt}@mail.ustc.edu.cn, {qchu, ynh}@ustc.edu.cn
cddlyf@gmail.com, {xiyang.dai, yiche, mengcliu, luyuan}@microsoft.com

1. Overview
In this supplementary material, we provide more imple-

mentation details, experimental results and analysis, includ-
ing:

• training of P-VQVAE (Section 2).

• sampling strategy for image inpainting (Section 3).

• network architecture of different models (Section 4).

• more results on different datasets (Section 5).

• more discussions on PUT (Section 6), including the
inference speed of PUT and some artifacts in inpainted
results.

2. Training of P-VQVAE
Given an image x and two different masks m and m′,

the input of P-VQVAE is x̂ = x ⊗m. The overall loss for
the training of P-VQVAE is:

Lvae = Lrec(x̂, x̂
R)+ ‖ sg[̂f]	 ê ‖22 +β ‖ sg[ê]	 f̂ ‖22,

(1)
where f̂ = E(x̂) denotes the feature vectors extracted by the
encoder and ê is quantized vectors for f̂ . x̂R = D(ê,m ⊗
m′, x̂⊗m′) is the reconstructed image and sg[·] refers to a
stop-gradient operation that blocks gradients from flowing
into its argument.

The last term in Eq. (1) is the so-called commitment
loss [15] with weighting factor β = 0.25. It is responsible
for passing gradient information from decoder to encoder.
The second term in Eq. (1) is the codebook loss for the
optimization of latent vectors. Following previous works
in [13,15], we replace the second term with the Exponential

*Work done during an internship at Microsoft
†Corresponding author

Algorithm 1: Sampling Strategy for Pluralistic Im-
age Inpainting

Input : x̂ ∈ RH×W×3: masked image needs to be inpainted
m ∈ {0, 1}H×W×3: the mask indicating whether a
pixel is masked/missing or not
K: top-K for Gibbs sampling

Output: x̂I ∈ RH×W×3: the inpainted image
1 Step1: get indicator mask, feature vectors, quantized tokens

2 m↓ ∈ {0, 1}
H
r
×W

r
×1: calculated from m

3 f̂ ∈ R
H
r
×W

r
×C ← E(x̂)

4 t̂ ∈ N
H
r
×W

r ← I(f̂ , e, e′,m↓) // Sec. 3.1 in the paper
5 t̂I ← t̂
6 Step2: sample tokens for masked patches
7 while

∑
i,j m

↓
i,j < HW

r2
do

8 p̂ ∈ [0, 1]
H
r
×W

r
×K ← T (f̂) // probabilities, Sec. 3.2 in

the paper
9 // select the patch with maximum probability

10 i′, j′ ← argmaxi,j(1−m↓i,j) ·max p̂i,j,:

11 // sample the token from the top-K elements in p̂i′,j′,:

12 k ← GIBBSSAMPLING(p̂i′,j′,:,K)
13 // update some variables
14 t̂I

i′,j′ ← k, m↓
i′,j′ ← 1, f̂i′,j′ ← ek

15 Step3: reconstruct the image
16 êI ∈← VECTORRETRIEVAL(̂tI , e)

17 x̂I ← D(êI ,m, x̂)

18 Return x̂I

Moving Average (EMA) to optimize e and e′. Specifically,
at each iteration t, the latent vector ek is updated as:

ntk = nt−1k ∗ γ + nk ∗ (1− γ),

ēt
k = ēt−1

k ∗ γ +
nk∑
j

(f̂k)j ∗ (1− γ),

et
k =

ēt
k

nt
k
,

(2)

where f̂k denotes the set of feature vectors in f̂ that assigned
to ek and nk is the number of feature vectors in f̂k. γ is the

1

Module Layer Parameter size / Stride Output size

P-Enc

Linear 192× 256 32× 32× 256
Linear

ResBlock

(
256× 128
128× 256

)
× 8 32× 32× 256

Linear 256× 256 32× 32× 256

D-Codes e 512× 256 -
e′ 512× 256 -

MSG-Dec

Conv 256× 3× 3× 256/1 32× 32× 256
Conv

ResBlock

(
256× 3× 3× 128/1
128× 3× 3× 256/1

)
× 8 32× 32× 256

Deconv
(Conv)

256× 4× 4× 256/2
(256× 4× 4× 256/2)

64× 64× 256
(32× 32× 256)

Deconv
(Conv)

256× 4× 4× 128/2
(128× 4× 4× 256/2)

128× 128× 128
(64× 64× 256)

Deconv
(Conv)

128× 4× 4× 64/2
(64× 4× 4× 128/2)

256× 256× 64
(128× 128× 128)

Conv†

(Conv)
64× 3× 3× 3/1

(3× 3× 3× 64/1)
256× 256× 3

(256× 256× 64)

Table 1. Architecture of P-VQVAE. For MSG-Dec, the brack-
eted layers in the bottom four rows denotes the layers in reference
branch. Except the convolution layer marked by †, all the other
layers are followed by a ReLU [9] activation function. The struc-
ture of Linear and Conv ResBlocks are shown in Figure 1.

Module Layer Parameter size / Stride Output size

Conv-Enc

Conv 3× 4× 4× 64/2 128× 128× 64
Conv 64× 4× 4× 128/2 64× 64× 128
Conv 128× 4× 4× 256/2 32× 32× 256
Conv

ResBlock

(
256× 3× 3× 128/1
128× 3× 3× 256/1

)
× 8 32× 32× 256

Conv 256× 3× 3× 256 32× 32× 256

Table 2. Architecture of the encoder in P-VQVAEconv. The learn-
able codebook and decoder are the same with those in P-VQVAE
in Table 1. All layers are followed by a ReLU [9] activation func-
tion.

decay parameter with the value between 0 and 1. We set
γ = 0.99 in all our experiments.

The first term in Eq. (1) is the reconstruction loss and
Lrec(·, ·) is the function to get the difference between the
inputted and reconstructed images. It consists of five parts,
including L1 loss between the pixel values in two images
(denoted as Lpixel) and the gradients of two images (de-
noted as Lgrad), the adversarial loss [5] Ladv , as well as the
perceptual loss [7] Lperc and style loss [4] Lstyle between
the two images. The design of the last three losses are in-
spired by the work in [10]. In the following, we describe
the aforementioned losses in detail. Among them:

Lpixel =M(|x̂	 x̂R|), (3)

Lgrad =M(|grad[x̂]	 grad[x̂R]|), (4)

whereM(·) refers to a mean-value operation, grad[·] is the
function calculating the gradient of the given image.

The adversarial loss Ladv is computed with the help of a

Dataset n′ h D D′ Param.
FFHQ [8] 30 8 512 64 95.0M

Places2 [18] 35 8 512 64 110.7M
ImageNet [2] 35 8 1024 128 441.7M

Table 3. UQ-Transformer with different model sizes for different
datasets. n′ and h are the number of transformer block and atten-
tion head. D is the dimensionality of feature vectors that before
and after each transformer block. D′ is the dimensionality of fea-
ture vector in each attention head.

discriminator network Dadv(·):

Ladv = −M(log[1	Dadv(x̂
R)])−M(log[Dadv(x̂)]),

(5)
where log[·] denotes element-wise logarithm operation. The
architecture of the discriminator network is the same with
that in [10].

The conceptual loss Lperc and style loss Lstyle are com-
puted based on the activation maps from VGG-19 [14]:

Lperc =

Lperc∑
l

M(|φl(x̂)	 φl(x̂R)|) (6)

Lstyle =

Lstyle∑
l

M(|G(φl(x̂))	 G(φl(x̂R))|) (7)

where φl(·) corresponds to different layers in VGG-19
[14], G(·) denotes the function that gets the Gram matrix
of its argument. For Lperc and Lstyle, we set Lperc =
{relu1 1, relu2 1, relu3 1, relu4 1, relu5 1} and Lperc =
{relu2 2, relu3 4, relu4 4, relu5 2}. The overall recon-
struction loss is:

Lrec = Lpixel + λgLgrad + λaLadv

+ λpLperc + λsLstyle

(8)

In our implementation, we set λg = 5, λa = 0.1, λp = 0.1
and λs = 250.

3. Sampling Strategy for Image Inpainting
The overall procedure can be divided into three steps:

1) get the feature vectors f̂ from the masked image x̂ us-
ing encoder and get the tokens t̂ by quantizing f̂ with latent
vectors in dual-codebook. The tokens for masked patches
are not required; 2) get the tokens for masked patches us-
ing transformer. Note that the tokens are iteratively sam-
pled with Gibbs sampling following previous transformer-
based works [3, 11, 12]; 3) retrieve quantized vectors êI

from codebook e based on the tokens and reconstruct the
inpainted image x̂I using decoder by referencing to masked
image x̂. The detailed sampling strategy is shown in Algo-
rithm 1.

× 𝑛

Lin
ear

Patch-based Encoder (P-Enc)

Dual-Codebook (D-Codes)

መ𝐟0,0 መ𝐟0,3

መ𝐟1,0 መ𝐟1,3

መ𝐟2,0 መ𝐟2,1 መ𝐟2,2 መ𝐟2,3

መ𝐟3,0 መ𝐟3,1 መ𝐟3,2 መ𝐟3,3

መ𝐟

መ𝐟0,1 መ𝐟0,2

መ𝐟1,1 መ𝐟1,2

× 𝑛

M
G

A

𝐞406 𝐞132

𝐞501 𝐞323

𝐞123 𝐞367

𝐞487 𝐞163

𝐞334 𝐞445

𝐞433 𝐞504

ො𝐞

𝐞241
′

𝐞256
′ 𝐞456

′

𝐞231
′

C
o

n
v

𝐞 𝐞′

1

…

0

𝐾

…

0

1

𝐾′

V
ecto

r
To

ken
izatio

n

𝐦′

C
o

n
v

C
o

n
v

D
eco

n
v

𝐦𝐱

× log2 𝑟

𝐱

ො𝐱R

C
o

n
v

𝐦

Multi-Scale Guided Decoder (MSG-Dec)

𝐻/𝑟 ×𝑊/𝑟 × 𝐶 𝐻/𝑟 ×𝑊/𝑟 × 𝐶

𝐻 ×𝑊 × 3 𝐻 ×𝑊 × 1 𝐻 ×𝑊 × 1 𝐻 ×𝑊 × 1 𝐻 ×𝑊 × 3

487

406

123 256 456 367

241 231

445

163

504

501 323 334

132 433

Vector Quantization

Lin
ear

R
esB

lo
ck

Lin
ear

ො𝐱

1

Mask Guided Addition (MGA)Linear ResBlock

Lin
ear

Lin
ear

Conv ResBlock

C
o

n
v

C
o

n
v

Elementwise Subtraction Elementwise AdditionElementwise MultiplicationPartition Downsample if NeededFlatten

Ƹ𝐭

C
o

n
v

R
esB

lo
ck

V
ecto

r
R

etrieval

Transformer Block

Layer
Norm MSA

Layer
Norm

MLP

Linear Linear

Transformer Block

Layer

Norm
MSA

Linear
Layer

Norm
Linear

MLP

Linear ResBlock

Linear Linear

Conv ResBlock

Conv Conv

(a) (b)

(c)

Figure 1. Architecture of different blocks. For Linear and Conv
ResBlocks, each layer is followed by a ReLU [9] activation func-
tion. For transformer block, there is a GELU [6] activation
function between the two linear layers. MSA: Multi-head Self-
Attention. MLP: Multi-Layer Perceptron.

4. Network Architecture

4.1. Auto-Encoder

For different datasets, we use P-VQVAE with the same
model size, and the architecture of our default P-VQVAE is
shown in Table 1. The structure of Linear and Conv Res-
Blocks are shown in Figure 1 (a) and (b). In the paper,
Section 4.3, several models are designed to show the effec-
tiveness of different components in our method, including
PUTconv, PUTone, PUTno ref , PUTqua0 and PUTtok. The
auto-encoders in the last two models are the same with our
default P-VQVAE. However, the auto-encoders in PUTconv

, PUTone and PUTno ref are different. For the auto-encoder
in PUTconv (denoted as P-VQVAEconv), all the linear layers
in the encoder are replaced with convolution layers, and the
input image is processed in a sliding window manner. Other
modules in P-VQVAEconv are the same with those in P-
VQVAE. The architecture of encoder in P-VQVAEconv (de-
noted as Conv-Enc) is shown in Table 2. The architecture
of the auto-encoder in PUTone is the same with P-VQVAE,
except only one codebook e is used for training and testing.
While for the auto-encdoer in PUTno ref , it can be obtained
from P-VQVAE by removing the reference branch in de-
coder.

4.2. Transformer

The architecture of transformer block is depicted in Fig-
ure 1 (c). There are several (denoted as n′) successive trans-
former blocks in UQ-Transformer. Within each transformer
block, the input features will be enhanced by self-attention.
Formally, let f̄ ∈ R

HW
r2
×D be the input of transformer

block. At the b-th transformer block, the feature vectors

Models
Datasets

FFHQ [8] Places2 [18] ImageNet [2]

UQ-Transformer
(# tokens/second) 37.138 32.048 17.186

P-VQVAE
(# images/second) 62.949

Table 4. Inference speed of different models. Tested on RTX 3090.
The time consumption of P-VQVAE includes extracting feature
vectors from image, quantizing feature vectors to latent vectors,
and reconstructing the input image.

are processed as:

f̃ b−1 = f̄ b−1 +MSA(LN(f̄b−1)),

f̄ b = f̃ b−1 +MLP(LN(f̃ b−1)),
(9)

where LN(·), MLP(·), MSA(·) denote layer normalization
[1], multi-layer perceptron and multi-head self-attention re-
spectively. More specifically, given input f ∈ R

HW
r2
×D,

MSA(·) could be formated as:

hj = softmax(
(fwj

q)(fw
j
k)

T

√
D′

)(fwj
v),

MSA(f) = [h0;h1; ...;hh−1]wo,

(10)

where h is the number of head, wj
q,w

j
k,w

j
v ∈ RD×D′

,
wo ∈ RhD′×D are the learnable parameters. [·; ...; ·] is the
operation that concatenates the given arguments along the
last dimension. By changing the values of h,D,D′ and n′,
we can easily scale the size of UQ-Transformer.

We use UQ-Transformer with different model sizes for
different datasets, which are shown in Table 3. As a re-
minder, the configuration of transformers are the same with
those in ICT [17].

5. More Results
We show more qualitative comparisons for FFHQ [8] (

Figure 3), Places2 [18] (Figure 4) and ImageNet [2] (Fig-
ure 5 and Figure 6).

6. More Discussions
Inference speed. As mentioned in Section 5 in the paper,
the main limitation of PUT is the inference speed, which
is also a common issue of existing transformer-based auto-
regressive methods [3, 12, 16, 17]. Here we present the in-
ference speed of PUT in Table 4. Note that the time con-
sumption of inpainting a masked image depends on the area
of masked regions.

Artifacts. We experimentally find that there sometimes
contain some artifacts in the generated results of PUT, as

PUT 1

Input PUTconv PUTone

PUTtok PUTqua0 PUT 2 PUT 3

502 852083 724

782124 284

292 380 791667

PUTno_ref

Input

Artifacts

PUT 1 PUT 2GT

Figure 2. Results with artifacts. Top: color distortion. Bottom:
black regions. Please pay attention to the contents in yellow rect-
angles.

shown in Figure 2. These artifacts can be divided into two
categories. 1) Color distortion: the color of generated con-
tents my not be consistent with the color of provided con-
tents in the image. 2) Black region: PUT may produce black
regions if the provided masked image contain lots of black
pixels.

69110

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1

MEDECDFv2

69119

PUT (Ours) 1ICT 3

PIC 3PIC 1 PIC 2

GT

Input

69126

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

69659

69152

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3

69039, mr0.4_0.6

GT

Figure 3. Qualitative comparisons between different methods on FFHQ [8].

Places365_val_00002990

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1

MEDECDFv2

PUT (Ours) 1ICT 3

PIC 3PIC 1 PIC 2

GT

Input

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

Places365_val_00002353

Places365_val_00024117

Places365_val_00021240

Figure 4. Qualitative comparisons between different methods on Places2 [18].

D
Fv

2
ILSVRC2012_val_00001290

G
T

In
p

u
t

P
U

T
(O

u
rs

)
1

IC
T

2
EC

M
ED

P
IC

P

U
T

(O
u

rs
)

2
IC

T
1

ILSVRC2012_val_00024017 ILSVRC2012_val_00027367

ILSVRC2012_val_00036474

ILSVRC2012_val_00008364
ILSVRC2012_val_00002758

ILSVRC2012_val_00001568
ILSVRC2012_val_00026068

Figure 5. Qualitative comparisons between different methods on ImageNet [2].

In
p

u
t

EC

ILSVRC2012_val_00030569
ILSVRC2012_val_0006183ILSVRC2012_val_00043718

ILSVRC2012_val_00045052
ILSVRC2012_val_00049085

ILSVRC2012_val_00030878 ILSVRC2012_val_0028823
D

Fv
2

G
T

P
U

T
(O

u
rs

)
1

IC
T

2
M

ED
P

IC

P
U

T
(O

u
rs

)
2

IC
T

1
ILSVRC2012_val_00039893

Figure 6. Qualitative comparisons between different methods on ImageNet [2].

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 3

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2, 3, 7, 8

[3] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12873–12883, 2021. 2, 3

[4] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414–2423, 2016. 2

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 2

[6] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 3

[7] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 2

[8] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4401–4410, 2019. 2, 3,
5

[9] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Icml, 2010. 2, 3

[10] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and
Mehran Ebrahimi. Edgeconnect: Structure guided image
inpainting using edge prediction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
Workshops, pages 0–0, 2019. 2

[11] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 2

[12] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. arXiv
preprint arXiv:2102.12092, 2021. 2, 3

[13] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generat-
ing diverse high-fidelity images with vq-vae-2. In Advances
in neural information processing systems, pages 14866–
14876, 2019. 1

[14] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[15] Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 6309–6318,
2017. 1

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 3

[17] Ziyu Wan, Jingbo Zhang, Dongdong Chen, and Jing Liao.
High-fidelity pluralistic image completion with transform-
ers. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 4692–4701, 2021. 3

[18] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE transactions on pattern analysis
and machine intelligence, 40(6):1452–1464, 2017. 2, 3, 6

