Supplementary Material

A. Baselines Details

For JPEG compression [1], we set the quality parameter
to 50. For spatial smoothing, we use window size 3. For
LGS [2], we set the block size to 30, overlap to 5, threshold
to 0.1, and smoothing factor to 2.3. For AT, we use PGD
attacks with 30 iterations and step size 0.067, which takes
around twelve hours per epoch on the xView training set and
thirty-two hours on COCO using ten GPUs. We use SGD
optimizers with an initial learning rate of 0.01, momentum
0.9, weight decay 5 x 104, and batch size 10. We train each
model with ten epochs. There is a possibility that the AT
models would perform better if we train them longer or tune
the training hyper-parameters. However, we were unable to
do so due to the extremely expensive computation needed.

B. SAC Details
B.1. Training the Patch Segmenter

COCO and xView datasets We use U-Net [3] with 16
initial filters as the patch segmenter on the COCO and xView
datasets. To train the patch segmenters, for each dataset
we generate 55k fixed adversarial images from the training
set with a patch size 100 x 100 by attacking base object
detectors, among which 50k are used for training and 5k
for validation. We randomly replace each adversarial image
with its clean counterpart with a probability of 30% during
training to ensure good performance on clean data. All
images are cropped to squares and resized to 500 x 500
during training. We use RMSprop [4] optimizer with an
initial learning rate of 10~%, momentum 0.9, weight decay
1078, and batch size 16. We train patch segmenters for five
epochs and evaluate them on the validation set five times in
each epoch. We reduce the learning rate by a factor of ten
if there is no improvement after two evaluations. For self
adversarial training, we train each model for one epoch with
A = 0.3 using PGD attacks with 200 iterations and step size
a = 0.01, which takes around eight hours on COCO and
four hours on xView using ten GPUs.

APRICOT dataset Detecting adversarial patches in the
physical world can be more challenging, as the shape and
appearance of patches can vary a lot under different viewing
angles and lighting conditions. For the APRICOT dataset,
We use U-Net [3] with 64 initial filters as the patch seg-
menter. We downscale each image by a factor of two during
training and evaluation to save memory as each image is
approximately 12 megapixels (e.g., 4000 x 3000 pixels).
We use 85% of the APRICOT test set (742 images) as the
training set, and the rest (131 images) as the validation set.
During training, we randomly crop 500 x 500 image patches
from the downscale images, with a probability of 60% that
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(a) 50 x 50

(b) 75 X 75 (d) 125 x 125
Figure 1. Different shapes used for evaluating SAC. From top to
bottom: square, circle, rectangle, diamond, triangle, and ellipse.
Shapes in each column have approximately the same n X n pixels,
where n € {50, 75,100, 125}.

an image patch contain an adversarial patch and 40% that it
contain no patch. We use RMSprop [4] optimizer with an
initial learning rate of 10~%, momentum 0.9, weight decay
10~8, and batch size 24. We train patch segmenters for 100
epochs, and reduce the learning rate by a factor of ten if the
dice score on the validation set has no improvement after 10
epochs. After training, we pick the checkpoint that has the
highest dice score on the validation set as our final model.
The training takes around four hours on six gpus.

B.2. Different Patch Shapes for Evaluating SAC

In the main paper, we demonstrate generalization to un-
seen patch shapes that were not considered in training the
patch segmenter and in shape completion, obtaining sur-
prisingly good robust performance. The shapes used for
evaluating SAC are shown in Fig. 1.
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B.3. Evaluate SAC with SSD

We use Faster R-CNN [5] as our base object detector in
the main paper. However, SAC is compatible with any object
detector as it is a pre-processing defense. In this section, we
show the performance of SAC using SSD [6] as the base
object detector on the COCO dataset. The pre-trained SSD
model is provided in torchvision [7]. We do not re-train
the patch segmenter for SSD as the self adversarial training
on the patch segmenter is object-detector agnostic. Results
shown in Table | demonstrate that SAC can also provide
strong robustness for SSD across different attack methods
and patch sizes.

Table 1. mAP (%) under different attack methods using SSD as the
base object detector. The mAP on clean images is 44.5% for the
undefended model and 44.4% for the SAC defended model.

Attack Method 75x75 100x100 125x125

Undefended 18.3£0.4 11.4£0.2 7.0+£0.1
SAC (Ours) 39.1£0.3 38.8+0.2 34.240.1
Undefended 21.5+0.8 16.9£0.2 12.5+0.6
SAC (Ours) 39.940.2 39.1+0.1 35.4£0.3
Undefended 17.6+0.5 10.4+£0.2 6.04+0.2
SAC (Ours) 37.9+£0.2 38.5£0.1 35.040.3

PGD [8]
DPatch [9]

MIM [10]

B.4. Shape Completion Details
B.4.1 Dynamic Programming for Shape Completion

Recall that our shape-completed mask is defined as:

1ot 34,5 MG = 1and
dH(Mps;y*v("*-f’)) <~ (1)

Msc (i) =
0 otherwise.
Here, we give a dynamic-programming based O(H x W)
time algorithm for computing this mask.
We first need to define the following O(H x W) time

subroutine: for an H x W binary matrix M, let Cuml.(M)
be defined as follows:

i g
Cuml.(M) i ) ==Y D M 2)
i'=1j'=1

The entire matrix Cuml.(M') can be computed in O(H x W)
as follows. We first define Cuml.” (M) as:

Cuml” (M) ) == > My j (3)
i'=1
Note that Cuml.” (M) jy = M(y ;) and that, for i > 1,

We can then construct Cuml.” (M) row-by-row along the
index ¢, with each cell taking constant time to fill: therefore
Cuml.” (M) is constructed in O(H x W) time. Cuml.(M)
can then be constructed through two applications of this
algorithm as:

Cuml.(M) = (CumlL.”((CumlL.*(M))")T ®)
We now apply this algorithm to Mps :
CumlMpg := Cuml.(Mpg). (6)
Note that, for each 7, j:

dy(Mpg, M>(9)
= Z (1_MPS,(i',j’))+

Z MPS,(Z”J’)

i’ €[i,i+s) i’ glii+s)V
3 €lh,i+s) VAV EE)
9 N N
=s"— > Mpsun+ D, Mpsg
i’ €[i,i+s) i’ giit+s)V
3’ €lj,g+s) 3’ €l5,5+s)
=5+ > Mpswyy—2 Y, Mpsuy
(#,5") i'€liyits)
3 €lh,g+s)
:$2 —|—CumlMps(H7w) —2( Z MPS7(i’7j’)_
i'€[1,i+s)
J'€llj+s)
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i'€[1,i)
J'€lL,j+s)

i'€[1,i+s)
J'€llg)

i'€[1,i)
J'€llg)

= s + CumlMpg, (g1 ) — 2 (CumlMPS,(i+s—1,j+s—1)
- CumlMP&(i—l,j-‘,—s—l) - CumlMPS,(i+s—1,j—1)

+ CumlMPS,(z‘—l,j—n)
(7

(We are disregarding edge cases where i + s > H or j +
s > W: these can be easily reasoned about.) Using a
pre-computed CumlMpg, we can then compute each of
these Hamming distances in constant time. We can then, in
O(H x W) time, compute the matrix M.,:

M

,(4,5) -+ dyg (Mpg,Ms (1:3)
v, (4:4) H( Ps52 )S’Y

where 1 denotes an indicator function. We also pre-compute
the cumulative sums of this matrix:

Cuml M, := Cuml.(M,,) )
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Now, recall the condition of Eq. (1):

dy(Mpg, M>'))

VT s,(i,5") _
3i', 5 M(m) =1and 22 <
=30, MUY = Land ML gy = 1
‘(Z> Z M'Y»(i/yj/) Z 1
i’ €(i—s,i
j/E(jfs,j]
= (T dhen- ¥
i’ €[1,i] i’ €[1,i—s]
j €] J 6[14]
— Z M"Yy(i/,j/) + Z M /,]/)>
i’ €[1,i] i’ €[1,i—s]
j'€ll,j—s] J 6[173 s]
< (CumlM%(i’j) — CumlM%(i,SJ)
- CumlM%(Z-,j,s) + CumlM%(i,S,j,S)) >1
(10)

Again, this can be computed in constant time for each in-
dex. Let C,y (3,5) = CumlM (i) CumlM (i—s,5) —
CurnlM,Y,(w_s) + CumlM,y7(i_S7j_s), then Eq. (1) becomes
simply:

Mso (ig) = ]lé%(i,j)zl (1D

This gives us an overall runtime of O(H x W) as desired.
Note that in our PyTorch implementation, we are able to use
tensor operations such that no explicit iteration over indices
is necessary at any point in the algorithm.

B.4.2 Adjusting v

In practice, the method described above can be highly sen-
sitive to the hyperparameter . If y is set too low, then no
candidate mask M*("'3") will be sufficiently close to Mpg,
so the detector will return nothing. However, if v is set too
high, then the shape completion will be too conservative,
masking a large area of possible candidate patches. (Note
that v > 1 is not usable, because it would cover an image
entirely with a mask even when M ps = 0.) To deal with this
issue, we initially use low values of -, and then gradually
increase 7y if no mask is initially returned — stopping when
either some mask is returned or a maximum value is reached,
at which point we assume that there is no ground-truth ad-
versarial patch. Specifically, for iterationt = 1,...,7, we

set
O[/B(tfl)7

where T € N, and «, < 1. We then return the first nonzero
M sc(S,7¢), or an empty mask if this does not occur. We
seta = 0.9, 8 =0.7,T = 15. The values of «, 5 and T are
tuned using grid search on a validation set with 200 images
from the xView dataset (See Figure 2).

<7

Figure 2. Validation set performance on xView under adaptive
attack, as a function of defense hyperparameters «, 3, T used for
searching over . Within each column, more green shading indi-
cates higher mAP.

B.4.3 Adaptive attacks on Shape Completion

To attack the patch segmenter, we use a straight-through
estimator (STE) [11] at the thresholding step: M pPs =
PSy(x) > 0.5. To attack the shape completion algorithm,
we have tried the following attacks:

BPDA Attack Note that the algorithm described in Sec-
tion B.4.1 involves two non-differentiable thresholding steps
(Eq. (8) and Eq. (11)). In order to implement an adaptive
attack, at these steps, we use BPDA, using a STE for the
gradient at each thresholding step. When aggregating masks
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which assume patches of different sizes (Equation 9 in the
main text) we also use a straight-through estimator on a
thresholded sum of masks. This is the strongest adaptive
attack for SAC that we found and we use this attack in the
main paper.

v-Search STE Attack There is an additional non-
differentiable step in the defense, however: the search over
values of 7 described in Section B.4.2. In order to deal with
this, we attempted to use BPDA as well, using the following
recursive formulation:

MSC(S)a,ﬁ,o =0
Msc(S)a,pr = Msc(S,1—a) (12)
+ 1swgo(s1-a <1MSC(S)Q*B,B,T71 (forT'> 1)

C

Where C'is the area of the smallest considered patch size in
S (i.e., the minimum nonzero shape completion output ).

We can then use a STE for the indicator function. How-
ever, this technique turns out to yield worse performance
in practice than simply treating the search over ~y as non-
differentiable (See Fig. 3). Therefore, in our main results,
we treat this search over 7 as non-differentiable, rather than
using an STE.

Log-Sum-Exp Transfer Attack We were also initially
concerned that the simple straight-through estimation ap-
proach for the algorithm described in Section B.4.1 might
fail, specifically at the point of Eq. (11), where the threshold
takes the form (see Eq. (10)):

Z M, i o > 1 (13)

i'€(i—s,i]

7' €(i—s.4]
where ]\Zf%(i/7 4+ s a 0/1 indicator of whether a patch should
be added to the final output mask with upper-left corner
(', 7"). We were concerned that a straight-through estimator
would propagate gradients to the sum directly, affecting every
potential patch which could cover a location (i, j), rather
than concentrating the gradient only on those patches that
actually contribute to the pixel (4, j) being masked.

To mitigate this, we first considered the equivalent thresh-

old condition:

Jmax M g > 1 (14)

i'€(i—s,i|

7' €(i—s.4]
While logically equivalent, the gradient propagated by the
STE to the LHS would now only propagate on to the values
M%(i/, ) which are equal to 1. However, unfortunately, this
formulation is not compatible with the dynamic program-
ming algorithm described in Section B.4.1: due to computa-
tional limitations, we do not want to compute the maximum
over every pair (i, j'), for each pair (i, j).

Figure 3. Difference in mAP under BPDA attack using STE gra-
dients for the search over «y (as in Eq. (12)) versus simply treating
the search as non-differentiable, on 200-image xView validation
set. Positive numbers (green) indicate that the non-differentiable
treatment yielded a more successful attack, while negative numbers
(red) indicate that the STE treatment was more successful. We
see that in most hyperparameter settings, the STE treatment of the
search over v made the attack less successful, and in no setting did
it make the attack substantially more successful.

To solve this problem, we instead used the following
proxy function when generating attack gradients (including
during the forward pass):

log ( 3 eC'mew)/C >1 (15)
]

i'€(i—s,i
J'€(G—5.4]
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where C'is a large constant (we use C' = 101og(100)). This
is the “LogSumExp” softmax function: note that the LHS is
approximately 1 if any M%(i,’ 4 is one and approximately
zero otherwise. Also note that the derivative of the LHS
with respect to each M,Y,(i/, ;) is similarly approximately 1

if ]\7[%(1‘,) 47y is one and zero otherwise. Crucially, we can
compute this in the above DP framework, simply by replac-
ing M'y,(ih j+) with its exponent (and taking the log before
thresholding).

However, in practice, the naive BPDA attack outperforms
this adaptive attack (Fig. 4). This is likely because the condi-
tion in Eq. (15) is an inexact approximation, so the function
being attacked differs from the true objective. (In both at-
tacks, we treat the search over v as nondifferentiable, as
described above.)

B.4.4 Patch Visualization

We find that adaptive attacks on models with SC would force
the attacker to generate patches that have more structured
noises trying to fool SC (see Fig. 5).

B.4.5 Visualization of Shape Completion Outputs

We provide several examples of shape completion outputs
in Fig. 6. The outputs of the patch segmenter can be dis-
turbed by the attacker such that some parts of the adversarial
patches are not detected, especially under adaptive attacks.
Given the output mask of the patch segmenter, the proposed
shape completion algorithm generates a “completed patch
mask” to cover the entire adversarial patches.

B.5. Visualization of Detection Results
B.5.1 SAC under Adaptive Attacks

We provide several examples of SAC under adaptive attacks
in Fig. 7 and Fig. 8. Adversarial patches create spurious
detections, and make the detector ignore the ground-truth
objects. SAC can detect and remove the adversarial patches
even under strong adaptive attacks, and therefore restore
model predictions.

B.5.2 SAC v.s. Baselines

In this paper, we compare SAC with JPEG [1], Spatial
Smoothing [12], LGS [2], and vanilla adversarial training
(AT) [8]. Visual comparisons are shown in Fig. 9 and Fig. 10.
JPEG, Spatial Smoothing, LGS are pre-processing defenses
that aim to remove the high-frequency information of ad-
versarial patches. They have reasonable performance under
non-adaptive attacks, but can not defend adaptive attacks
where the adversary also attacks the pre-process functions.
In addition, they degrade image quality, especially LGS,
which degrades their performance on clean images. SAC

Figure 4. Difference in mAP using Log-Sum-Exp approximation
for Eq. (11) as described in Eq. (15) versus the naive BPDA attack
we ultimately used, on 200-image xView validation set. Positive
numbers (green) indicate that the naive BPDA attack yielded a
more successful attack, while negative numbers (red) indicate that
the Log-Sum-Exp treatment was more successful. We see that in
most hyperparameter settings, the Log-Sum-Exp technique made
the attack less successful, and in no setting did it make the attack
substantially more successful.

can defend both non-adaptive and adaptive attacks. In addi-
tion, SAC does not degrade image quality, and therefore can
maintain high performance on clean images.
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240 distort the pixels and destroy all the information within the 594
241 patch such as in physical patch attacks, there is no chance 995
242 that we can detect the objects hiding behind the adversarial 996
43 patches. However, in the case where the patches are less 97
a4 visible, some information may be preserved in the patched 98
45 area. We can potentially impaint or reconstruct the content 999
?Zg (@ Patch for SAC without SC. () Patch for SAC with SC. within the patches to help detection. 22:’
548 Figure 5. 100 x 100 adversarial patches generated by adaptive at- 602
549 tacks on xView dataset. Patches for SAC without shape completion 603
550 (SC) have widespread noises in the square bounded area, while 604
551 patches for SAC with SC have structured noises. 605
552 606
°%8 B.5.3 SAC under Different Attack Methods oo
554 608
555 We visualize the detection results of SAC under different 609
556 attacks in Fig. 11 and Fig. 12, including PGD [8], MIM [10] 610
557 and DPatch [9]. SAC can effectively detect and remove 611
558 the adversarial patches under different attacks and restore 612
559 the model predictions. We also notice that the adversarial 613
560 patches generated by different methods has different styles. 614
561 PGD generated adversarial patches are less visible, even 615
562 though it has the same ¢ = 1 attack budget. 616
563 617
264 B.5.4 SAC under Different Patch Shapes o8
565 619
566 ‘We visualize the detection results of SAC under PGD attacks 620
567 with unseen patch shapes in Fig. 13 and Fig. 14, including 621
568 circle, rectangle and ellipse. SAC can effectively detect 622
569 and remove the adversarial patches of different shapes and 623
570 restore the model predictions, even though those shapes are 624
571 used in training the patch segmenter and mismatch the square 625
572 shape prior in shape completion. However, we do notice that 626
573 masked region can be larger than the original patches as SAC 627
574 tries to cover the patch with square shapes. 628
575 629
276 B.5.5 Failure Cases 630
577 631
578 There are several failure modes in SAC: 1) SAC completely 632
579 fails to detect a patch (e.g., Fig. 15 row 1), which happens 633
580 very rarely; 2) SAC successfully detects and removes a patch, 634
581 but the black blocks from patch removing causes misdetec- 635
582 tion (e.g., Fig. 15 row 2), which happens more often on the 636
583 COCO dataset since black blocks resemble some object cate- 637
584 gories in the dataset such as TV, traffic light, and suitcase; 3) 638
585 SAC successfully detects and removes a patch, but the patch 639
586 covers foreground objects and thus the object detector fails 640
587 to detect the objects on the masked image (e.g., Fig. 15 row 641
588 3). We can potentially mitigate the first issue by improving 642
589 the patch segmenter, such as using more advanced segmen- 643
590 tation networks and doing longer self adversarial training. 644
591 For the second issue, we can avoid it by fine-tuning the base 645
592 object detetor on images with randomly-placed black blocks. 646
593 For the third issue, if the attacker is allowed to arbitrarily 647



(a) Adversarial images. (b) Outputs of patch segmentation ]\T[ps. (c) Outputs of shape completion NTSC. (d) Ground-truth patch masks M.

Figure 6. Visualization of shape completion outputs. Given the output of the patch segmenter, the proposed shape completion algorithm
generates a “completed patch mask” to cover the entire adversarial patches.
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Figure 7. Examples on the COCO dataset. The adversarial patches are 100 x 100 squares generated by PGD adaptive attacks.
8
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z:: (a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images. 323
916 Figure 8. Examples on the xView dataset. The adversarial patches are 100 x 100 squares generated by PGD adaptive attacks. Adversarial 970
917 patches create spurious detections, and make the detector ignore the ground-truth objects. SAC can detect and remove the patches even 971

under strong adaptive attacks, and therefore restore model predictions.
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(a) Ground-truth on the clean image. (b) Predictions on the clean image. (c) Predictions on the adversarial image.  (d) Predictions of the AT model on the ad-
versarial image.

(e) Predictions on the JPEG [1] processed (f) Predictions on the Spatial Smooth- (g) Predictions on the LGS [2] processed (h) Predictions on the SAC masked adver-
adversarial image (non-adaptive attack). ing [12] processed adversarial image (non- adversarial image (non-adaptive attack). sarial image (non-adaptive attack).
adaptive attack).

(i) Predictions on the JPEG [!] processed (j) Predictions on the Spatial Smooth- (k) Predictions on the LGS [2] processed (1) Predictions on the SAC masked adver-
adversarial image (adaptive attack). ing [12] processed adversarial image adversarial image (adaptive attack). sarial image (adaptive attack).
(adaptive attack).

Figure 9. Detection results of different defense methods on the COCO dataset. The adversarial patches are 100 x 100 squares and placed at
the same location. JPEG [1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend
adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC
can defend both non-adaptive and adaptive attacks and maintains high image quality.
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(a) Ground-truth on the clean image. (b) Predictions on the clean image. (c) Predictions on the adversarial image.  (d) Predictions of the AT model on the ad-
versarial image.

(e) Predictions on the JPEG [1] processed (f) Predictions on the Spatial Smooth- (g) Predictions on the LGS [2] processed (h) Predictions on the SAC masked adver-
adversarial image (non-adaptive attack). ing [12] processed adversarial image (non- adversarial image (non-adaptive attack). sarial image (non-adaptive attack).
adaptive attack).

(i) Predictions on the JPEG [!] processed (j) Predictions on the Spatial Smooth- (k) Predictions on the LGS [2] processed (1) Predictions on the SAC masked adver-
adversarial image (adaptive attack). ing [12] processed adversarial image adversarial image (adaptive attack). sarial image (adaptive attack).
(adaptive attack).

Figure 10. Detection results of different defense methods on the xView dataset. The adversarial patches are 100 x 100 squares and placed at
the same location. JPEG [ 1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend
adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC
can defend both non-adaptive and adaptive attacks and maintains high image quality.
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(a) Ground-truth on the clean image. (b) Predictions on the PGD adversarial im- (c) Predictions on the MIM adversarial im- (d) Prediction on the DPatch adversarial
age. age. image (undefended).
(e) Predictions on the clean image. (f) Predictions on the SAC masked PGD (g) Predictions on the SAC masked MIM (h) Predictions on the SAC masked DPatch
adversarial image. adversarial image. adversarial image.

Figure 11. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is
taken from the COCO dataset. The adversarial patches are 100 x 100 squares and placed at the same location.

(a) Ground-truth on the clean image. (b) Predictions on the PGD adversarial im- (c) Predictions on the MIM adversarial im- (d) Prediction on the DPatch adversarial
age. age. image (undefended).
(e) Predictions on the clean image. (f) Predictions on the SAC masked PGD (g) Predictions on the SAC masked MIM  (h) Predictions on the SAC masked DPatch
adversarial image. adversarial image. adversarial image.

Figure 12. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is
taken from the xView dataset. The adversarial patches are 100 x 100 squares and placed at the same location.
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(a) Ground-truth on the clean image. (b) Predictions on the adversarial image (c) Predictions on the adversarial image (d) Predictions on the adversarial image
with a circle patch. with a rectangle patch. with a ellipse patch.
(e) Predictions on the clean image. (f) Predictions on the SAC masked adver- (g) Predictions on the SAC masked adver- (h) Predictions on the SAC masked adver-
sarial image with a circle patch. sarial image with a rectangle patch. sarial image with an ellipse patch.

Figure 13. Detection results on adversarial images with different patch shapes. The image is taken from the COCO dataset. The adversarial
patches have 100 x 100 pixels and placed at the same location.

(a) Ground-truth. (b) Predictions on the adversarial image (c) Predictions on the adversarial image (d) Predictions on the adversarial image
with a circle patch. with a rectangle patch. with a ellipse patch.
(e) Predictions on the clean image. (f) Predictions on the SAC masked adver- (g) Predictions on the SAC masked adver- (h) Predictions on the SAC masked adver-
sarial image with a circle patch. sarial image with a rectangle patch. sarial image with an ellipse patch.

Figure 14. Detection results on adversarial images with different patch shapes. The image is taken from the xView dataset. The adversarial
patches have 100 x 100 pixels and placed at the same location.
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