Supplementary Material

A. Baselines Details

For JPEG compression [1], we set the quality parameter
to 50. For spatial smoothing, we use window size 3. For
LGS [2], we set the block size to 30, overlap to 5, threshold
to 0.1, and smoothing factor to 2.3. For AT, we use PGD
attacks with 30 iterations and step size 0.067, which takes
around twelve hours per epoch on the xView training set and
thirty-two hours on COCO using ten GPUs. We use SGD
optimizers with an initial learning rate of 0.01, momentum
0.9, weight decay 5 x 104, and batch size 10. We train each
model with ten epochs. There is a possibility that the AT
models would perform better if we train them longer or tune
the training hyper-parameters. However, we were unable to
do so due to the extremely expensive computation needed.

B. SAC Details
B.1. Training the Patch Segmenter

COCO and xView datasets We use U-Net [3] with 16
initial filters as the patch segmenter on the COCO and xView
datasets. To train the patch segmenters, for each dataset
we generate 55k fixed adversarial images from the training
set with a patch size 100 x 100 by attacking base object
detectors, among which 50k are used for training and 5k
for validation. We randomly replace each adversarial image
with its clean counterpart with a probability of 30% during
training to ensure good performance on clean data. All
images are cropped to squares and resized to 500 x 500
during training. We use RMSprop [4] optimizer with an
initial learning rate of 10~%, momentum 0.9, weight decay
1078, and batch size 16. We train patch segmenters for five
epochs and evaluate them on the validation set five times in
each epoch. We reduce the learning rate by a factor of ten
if there is no improvement after two evaluations. For self
adversarial training, we train each model for one epoch with
A = 0.3 using PGD attacks with 200 iterations and step size
a = 0.01, which takes around eight hours on COCO and
four hours on xView using ten GPUs.

APRICOT dataset Detecting adversarial patches in the
physical world can be more challenging, as the shape and
appearance of patches can vary a lot under different viewing
angles and lighting conditions. For the APRICOT dataset,
We use U-Net [3] with 64 initial filters as the patch seg-
menter. We downscale each image by a factor of two during
training and evaluation to save memory as each image is
approximately 12 megapixels (e.g., 4000 x 3000 pixels).
We use 85% of the APRICOT test set (742 images) as the
training set, and the rest (131 images) as the validation set.
During training, we randomly crop 500 x 500 image patches
from the downscale images, with a probability of 60% that

aaaaaa

(a) 50 x 50

(b) 75 X 75 (d) 125 x 125
Figure 1. Different shapes used for evaluating SAC. From top to
bottom: square, circle, rectangle, diamond, triangle, and ellipse.
Shapes in each column have approximately the same n X n pixels,
where n € {50, 75,100, 125}.

an image patch contain an adversarial patch and 40% that it
contain no patch. We use RMSprop [4] optimizer with an
initial learning rate of 10~%, momentum 0.9, weight decay
10~8, and batch size 24. We train patch segmenters for 100
epochs, and reduce the learning rate by a factor of ten if the
dice score on the validation set has no improvement after 10
epochs. After training, we pick the checkpoint that has the
highest dice score on the validation set as our final model.
The training takes around four hours on six gpus.

B.2. Different Patch Shapes for Evaluating SAC

In the main paper, we demonstrate generalization to un-
seen patch shapes that were not considered in training the
patch segmenter and in shape completion, obtaining sur-
prisingly good robust performance. The shapes used for
evaluating SAC are shown in Fig. 1.

CVPR
#8898

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B.3. Evaluate SAC with SSD

We use Faster R-CNN [5] as our base object detector in
the main paper. However, SAC is compatible with any object
detector as it is a pre-processing defense. In this section, we
show the performance of SAC using SSD [6] as the base
object detector on the COCO dataset. The pre-trained SSD
model is provided in torchvision [7]. We do not re-train
the patch segmenter for SSD as the self adversarial training
on the patch segmenter is object-detector agnostic. Results
shown in Table | demonstrate that SAC can also provide
strong robustness for SSD across different attack methods
and patch sizes.

Table 1. mAP (%) under different attack methods using SSD as the
base object detector. The mAP on clean images is 44.5% for the
undefended model and 44.4% for the SAC defended model.

Attack Method 75x75 100x100 125x125

Undefended 18.3£0.4 11.4£0.2 7.0+£0.1
SAC (Ours) 39.1£0.3 38.8+0.2 34.240.1
Undefended 21.5+0.8 16.9£0.2 12.5+0.6
SAC (Ours) 39.940.2 39.1+0.1 35.4£0.3
Undefended 17.6+0.5 10.4+£0.2 6.04+0.2
SAC (Ours) 37.9+£0.2 38.5£0.1 35.040.3

PGD [8]
DPatch [9]

MIM [10]

B.4. Shape Completion Details
B.4.1 Dynamic Programming for Shape Completion

Recall that our shape-completed mask is defined as:

1ot 34,5 MG = 1and
dH(Mps;y*v("*-f’)) <~ (1)

Msc (i) =
0 otherwise.
Here, we give a dynamic-programming based O(H x W)
time algorithm for computing this mask.
We first need to define the following O(H x W) time

subroutine: for an H x W binary matrix M, let Cuml.(M)
be defined as follows:

i g
Cuml.(M) i) ==Y D M 2)
i'=1j'=1

The entire matrix Cuml.(M') can be computed in O(H x W)
as follows. We first define Cuml.” (M) as:

Cuml” (M)) == > My j (3)
i'=1
Note that Cuml.” (M) jy = M(y ;) and that, for i > 1,

We can then construct Cuml.” (M) row-by-row along the
index ¢, with each cell taking constant time to fill: therefore
Cuml.” (M) is constructed in O(H x W) time. Cuml.(M)
can then be constructed through two applications of this
algorithm as:

Cuml.(M) = (CumlL.”((CumlL.*(M))")T ®)
We now apply this algorithm to Mps :
CumlMpg := Cuml.(Mpg). (6)
Note that, for each 7, j:

dy(Mpg, M>(9)
= Z (1_MPS,(i',j’))+

Z MPS,(Z”J’)

i’ €[i,i+s) i’ glii+s)V
3 €lh,i+s) VAV EE)
9 N N
=s"— > Mpsun+ D, Mpsg
i’ €[i,i+s) i’ giit+s)V
3’ €lj,g+s) 3’ €l5,5+s)
=5+ > Mpswyy—2 Y, Mpsuy
(#,5") i'€liyits)
3 €lh,g+s)
:$2 —|—CumlMps(H7w) —2(Z MPS7(i’7j’)_
i'€[1,i+s)
J'€llj+s)

CVPR
#8898

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Z MPS,(i’7j’)_ Z MPS,(i’,j’)"’ Z MPS,(i’,j’) 22

i'€[1,i)
J'€lL,j+s)

i'€[1,i+s)
J'€llg)

i'€[1,i)
J'€llg)

= s + CumlMpg, (g1) — 2 (CumlMPS,(i+s—1,j+s—1)
- CumlMP&(i—l,j-‘,—s—l) - CumlMPS,(i+s—1,j—1)

+ CumlMPS,(z‘—l,j—n)
(7

(We are disregarding edge cases where i + s > H or j +
s > W: these can be easily reasoned about.) Using a
pre-computed CumlMpg, we can then compute each of
these Hamming distances in constant time. We can then, in
O(H x W) time, compute the matrix M.,:

M

,(4,5) -+ dyg (Mpg,Ms (1:3)
v, (4:4) H(Ps52)S’Y

where 1 denotes an indicator function. We also pre-compute
the cumulative sums of this matrix:

Cuml M, := Cuml.(M,,))

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#8898

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Now, recall the condition of Eq. (1):

dy(Mpg, M>'))

VT s,(i,5") _
3i', 5 M(m) =1and 22 <
=30, MUY = Land ML gy = 1
‘(Z> Z M'Y»(i/yj/) Z 1
i’ €(i—s,i
j/E(jfs,j]
= (T dhen- ¥
i’ €[1,i] i’ €[1,i—s]
j €] J 6[14]
— Z M"Yy(i/,j/) + Z M /,]/)>
i’ €[1,i] i’ €[1,i—s]
j'€ll,j—s] J 6[173 s]
< (CumlM%(i’j) — CumlM%(i,SJ)
- CumlM%(Z-,j,s) + CumlM%(i,S,j,S)) >1
(10)

Again, this can be computed in constant time for each in-
dex. Let C,y (3,5) = CumlM (i) CumlM (i—s,5) —
CurnlM,Y,(w_s) + CumlM,y7(i_S7j_s), then Eq. (1) becomes
simply:

Mso (ig) =]lé%(i,j)zl (1D

This gives us an overall runtime of O(H x W) as desired.
Note that in our PyTorch implementation, we are able to use
tensor operations such that no explicit iteration over indices
is necessary at any point in the algorithm.

B.4.2 Adjusting v

In practice, the method described above can be highly sen-
sitive to the hyperparameter . If y is set too low, then no
candidate mask M*("'3") will be sufficiently close to Mpg,
so the detector will return nothing. However, if v is set too
high, then the shape completion will be too conservative,
masking a large area of possible candidate patches. (Note
that v > 1 is not usable, because it would cover an image
entirely with a mask even when M ps = 0.) To deal with this
issue, we initially use low values of -, and then gradually
increase 7y if no mask is initially returned — stopping when
either some mask is returned or a maximum value is reached,
at which point we assume that there is no ground-truth ad-
versarial patch. Specifically, for iterationt = 1,...,7, we

set
O[/B(tfl)7

where T € N, and «, < 1. We then return the first nonzero
M sc(S,7¢), or an empty mask if this does not occur. We
seta = 0.9, 8 =0.7,T = 15. The values of «, 5 and T are
tuned using grid search on a validation set with 200 images
from the xView dataset (See Figure 2).

<7

Figure 2. Validation set performance on xView under adaptive
attack, as a function of defense hyperparameters «, 3, T used for
searching over . Within each column, more green shading indi-
cates higher mAP.

B.4.3 Adaptive attacks on Shape Completion

To attack the patch segmenter, we use a straight-through
estimator (STE) [11] at the thresholding step: M pPs =
PSy(x) > 0.5. To attack the shape completion algorithm,
we have tried the following attacks:

BPDA Attack Note that the algorithm described in Sec-
tion B.4.1 involves two non-differentiable thresholding steps
(Eq. (8) and Eq. (11)). In order to implement an adaptive
attack, at these steps, we use BPDA, using a STE for the
gradient at each thresholding step. When aggregating masks

CVPR
#8898

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#8898

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

which assume patches of different sizes (Equation 9 in the
main text) we also use a straight-through estimator on a
thresholded sum of masks. This is the strongest adaptive
attack for SAC that we found and we use this attack in the
main paper.

v-Search STE Attack There is an additional non-
differentiable step in the defense, however: the search over
values of 7 described in Section B.4.2. In order to deal with
this, we attempted to use BPDA as well, using the following
recursive formulation:

MSC(S)a,ﬁ,o =0
Msc(S)a,pr = Msc(S,1—a) (12)
+ 1swgo(s1-a <1MSC(S)Q*B,B,T71 (forT'> 1)

C

Where C'is the area of the smallest considered patch size in
S (i.e., the minimum nonzero shape completion output).

We can then use a STE for the indicator function. How-
ever, this technique turns out to yield worse performance
in practice than simply treating the search over ~y as non-
differentiable (See Fig. 3). Therefore, in our main results,
we treat this search over 7 as non-differentiable, rather than
using an STE.

Log-Sum-Exp Transfer Attack We were also initially
concerned that the simple straight-through estimation ap-
proach for the algorithm described in Section B.4.1 might
fail, specifically at the point of Eq. (11), where the threshold
takes the form (see Eq. (10)):

Z M, i o > 1 (13)

i'€(i—s,i]

7' €(i—s.4]
where]\Zf%(i/7 4+ s a 0/1 indicator of whether a patch should
be added to the final output mask with upper-left corner
(', 7"). We were concerned that a straight-through estimator
would propagate gradients to the sum directly, affecting every
potential patch which could cover a location (i, j), rather
than concentrating the gradient only on those patches that
actually contribute to the pixel (4, j) being masked.

To mitigate this, we first considered the equivalent thresh-

old condition:

Jmax M g > 1 (14)

i'€(i—s,i|

7' €(i—s.4]
While logically equivalent, the gradient propagated by the
STE to the LHS would now only propagate on to the values
M%(i/,) which are equal to 1. However, unfortunately, this
formulation is not compatible with the dynamic program-
ming algorithm described in Section B.4.1: due to computa-
tional limitations, we do not want to compute the maximum
over every pair (i, j'), for each pair (i, j).

Figure 3. Difference in mAP under BPDA attack using STE gra-
dients for the search over «y (as in Eq. (12)) versus simply treating
the search as non-differentiable, on 200-image xView validation
set. Positive numbers (green) indicate that the non-differentiable
treatment yielded a more successful attack, while negative numbers
(red) indicate that the STE treatment was more successful. We
see that in most hyperparameter settings, the STE treatment of the
search over v made the attack less successful, and in no setting did
it make the attack substantially more successful.

To solve this problem, we instead used the following
proxy function when generating attack gradients (including
during the forward pass):

log (3 eC'mew)/C >1 (15)
]

i'€(i—s,i
J'€(G—5.4]

CVPR
#8898

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#8898

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
47
472
473
474
475
476
477
478
479
480
481
482
483
484
485

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

where C'is a large constant (we use C' = 101og(100)). This
is the “LogSumExp” softmax function: note that the LHS is
approximately 1 if any M%(i,’ 4 is one and approximately
zero otherwise. Also note that the derivative of the LHS
with respect to each M,Y,(i/, ;) is similarly approximately 1

if]\7[%(1‘,) 47y is one and zero otherwise. Crucially, we can
compute this in the above DP framework, simply by replac-
ing M'y,(ih j+) with its exponent (and taking the log before
thresholding).

However, in practice, the naive BPDA attack outperforms
this adaptive attack (Fig. 4). This is likely because the condi-
tion in Eq. (15) is an inexact approximation, so the function
being attacked differs from the true objective. (In both at-
tacks, we treat the search over v as nondifferentiable, as
described above.)

B.4.4 Patch Visualization

We find that adaptive attacks on models with SC would force
the attacker to generate patches that have more structured
noises trying to fool SC (see Fig. 5).

B.4.5 Visualization of Shape Completion Outputs

We provide several examples of shape completion outputs
in Fig. 6. The outputs of the patch segmenter can be dis-
turbed by the attacker such that some parts of the adversarial
patches are not detected, especially under adaptive attacks.
Given the output mask of the patch segmenter, the proposed
shape completion algorithm generates a “completed patch
mask” to cover the entire adversarial patches.

B.5. Visualization of Detection Results
B.5.1 SAC under Adaptive Attacks

We provide several examples of SAC under adaptive attacks
in Fig. 7 and Fig. 8. Adversarial patches create spurious
detections, and make the detector ignore the ground-truth
objects. SAC can detect and remove the adversarial patches
even under strong adaptive attacks, and therefore restore
model predictions.

B.5.2 SAC v.s. Baselines

In this paper, we compare SAC with JPEG [1], Spatial
Smoothing [12], LGS [2], and vanilla adversarial training
(AT) [8]. Visual comparisons are shown in Fig. 9 and Fig. 10.
JPEG, Spatial Smoothing, LGS are pre-processing defenses
that aim to remove the high-frequency information of ad-
versarial patches. They have reasonable performance under
non-adaptive attacks, but can not defend adaptive attacks
where the adversary also attacks the pre-process functions.
In addition, they degrade image quality, especially LGS,
which degrades their performance on clean images. SAC

Figure 4. Difference in mAP using Log-Sum-Exp approximation
for Eq. (11) as described in Eq. (15) versus the naive BPDA attack
we ultimately used, on 200-image xView validation set. Positive
numbers (green) indicate that the naive BPDA attack yielded a
more successful attack, while negative numbers (red) indicate that
the Log-Sum-Exp treatment was more successful. We see that in
most hyperparameter settings, the Log-Sum-Exp technique made
the attack less successful, and in no setting did it make the attack
substantially more successful.

can defend both non-adaptive and adaptive attacks. In addi-
tion, SAC does not degrade image quality, and therefore can
maintain high performance on clean images.

CVPR
#8898

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR CVPR

#8898 #8898
CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

240 distort the pixels and destroy all the information within the 594
241 patch such as in physical patch attacks, there is no chance 995
242 that we can detect the objects hiding behind the adversarial 996
43 patches. However, in the case where the patches are less 97
a4 visible, some information may be preserved in the patched 98
45 area. We can potentially impaint or reconstruct the content 999
?Zg (@ Patch for SAC without SC. () Patch for SAC with SC. within the patches to help detection. 22:’
548 Figure 5. 100 x 100 adversarial patches generated by adaptive at- 602
549 tacks on xView dataset. Patches for SAC without shape completion 603
550 (SC) have widespread noises in the square bounded area, while 604
551 patches for SAC with SC have structured noises. 605
552 606
°%8 B.5.3 SAC under Different Attack Methods oo
554 608
555 We visualize the detection results of SAC under different 609
556 attacks in Fig. 11 and Fig. 12, including PGD [8], MIM [10] 610
557 and DPatch [9]. SAC can effectively detect and remove 611
558 the adversarial patches under different attacks and restore 612
559 the model predictions. We also notice that the adversarial 613
560 patches generated by different methods has different styles. 614
561 PGD generated adversarial patches are less visible, even 615
562 though it has the same ¢ = 1 attack budget. 616
563 617
264 B.5.4 SAC under Different Patch Shapes o8
565 619
566 ‘We visualize the detection results of SAC under PGD attacks 620
567 with unseen patch shapes in Fig. 13 and Fig. 14, including 621
568 circle, rectangle and ellipse. SAC can effectively detect 622
569 and remove the adversarial patches of different shapes and 623
570 restore the model predictions, even though those shapes are 624
571 used in training the patch segmenter and mismatch the square 625
572 shape prior in shape completion. However, we do notice that 626
573 masked region can be larger than the original patches as SAC 627
574 tries to cover the patch with square shapes. 628
575 629
276 B.5.5 Failure Cases 630
577 631
578 There are several failure modes in SAC: 1) SAC completely 632
579 fails to detect a patch (e.g., Fig. 15 row 1), which happens 633
580 very rarely; 2) SAC successfully detects and removes a patch, 634
581 but the black blocks from patch removing causes misdetec- 635
582 tion (e.g., Fig. 15 row 2), which happens more often on the 636
583 COCO dataset since black blocks resemble some object cate- 637
584 gories in the dataset such as TV, traffic light, and suitcase; 3) 638
585 SAC successfully detects and removes a patch, but the patch 639
586 covers foreground objects and thus the object detector fails 640
587 to detect the objects on the masked image (e.g., Fig. 15 row 641
588 3). We can potentially mitigate the first issue by improving 642
589 the patch segmenter, such as using more advanced segmen- 643
590 tation networks and doing longer self adversarial training. 644
591 For the second issue, we can avoid it by fine-tuning the base 645
592 object detetor on images with randomly-placed black blocks. 646
593 For the third issue, if the attacker is allowed to arbitrarily 647

(a) Adversarial images. (b) Outputs of patch segmentation]\T[ps. (c) Outputs of shape completion NTSC. (d) Ground-truth patch masks M.

Figure 6. Visualization of shape completion outputs. Given the output of the patch segmenter, the proposed shape completion algorithm
generates a “completed patch mask” to cover the entire adversarial patches.

CVPR CVPR

#8898 #8898
CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

756 810
757 811
758 812
759 813
760 814
761 815
762 816
763 817
764 818
765 819
766 820
767 821
768 822
769 823
770 824
77 825
772 826
773 827
774 828
775 829
776 830
777 831
778 832
779 833
780 834
781 835
782 836
783 837
784 838
785 839
786 840
787 841
788 842
789 843
790 844
791 845
792 846
793 847
794 848
795 849
796 850
797 851
798 852
799 853
800 854
801 855
802 856
803 857
804 858
805 859
806 860
807 861
808 862
809 (a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images. 863

Figure 7. Examples on the COCO dataset. The adversarial patches are 100 x 100 squares generated by PGD adaptive attacks.
8

CVPR CVPR

#8898 #8898
CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

864 918
865 919
866 920
867 921
868 922
869 923
870 924
871 925
872 926
873 927
874 928
875 929
876 930
877 931
878 932
879 933
880 934
881 935
882 936
883 937
884 938
885 939
886 940
887 941
888 942
889 943
890 944
891 945
892 946
893 947
894 948
895 949
896 950
897 951
898 952
899 953
900 954
901 955
902 956
903 957
904 958
905 959
906 960
907 961
908 962
909 963
910 964
911 965
912 966
913 967
z:: (a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images. 323
916 Figure 8. Examples on the xView dataset. The adversarial patches are 100 x 100 squares generated by PGD adaptive attacks. Adversarial 970
917 patches create spurious detections, and make the detector ignore the ground-truth objects. SAC can detect and remove the patches even 971

under strong adaptive attacks, and therefore restore model predictions.

9

CVPR
#8898

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on the clean image. (b) Predictions on the clean image. (c) Predictions on the adversarial image. (d) Predictions of the AT model on the ad-
versarial image.

(e) Predictions on the JPEG [1] processed (f) Predictions on the Spatial Smooth- (g) Predictions on the LGS [2] processed (h) Predictions on the SAC masked adver-
adversarial image (non-adaptive attack). ing [12] processed adversarial image (non- adversarial image (non-adaptive attack). sarial image (non-adaptive attack).
adaptive attack).

(i) Predictions on the JPEG [!] processed (j) Predictions on the Spatial Smooth- (k) Predictions on the LGS [2] processed (1) Predictions on the SAC masked adver-
adversarial image (adaptive attack). ing [12] processed adversarial image adversarial image (adaptive attack). sarial image (adaptive attack).
(adaptive attack).

Figure 9. Detection results of different defense methods on the COCO dataset. The adversarial patches are 100 x 100 squares and placed at
the same location. JPEG [1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend
adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC
can defend both non-adaptive and adaptive attacks and maintains high image quality.

10

CVPR
#8898

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

CVPR
#8898

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on the clean image. (b) Predictions on the clean image. (c) Predictions on the adversarial image. (d) Predictions of the AT model on the ad-
versarial image.

(e) Predictions on the JPEG [1] processed (f) Predictions on the Spatial Smooth- (g) Predictions on the LGS [2] processed (h) Predictions on the SAC masked adver-
adversarial image (non-adaptive attack). ing [12] processed adversarial image (non- adversarial image (non-adaptive attack). sarial image (non-adaptive attack).
adaptive attack).

(i) Predictions on the JPEG [!] processed (j) Predictions on the Spatial Smooth- (k) Predictions on the LGS [2] processed (1) Predictions on the SAC masked adver-
adversarial image (adaptive attack). ing [12] processed adversarial image adversarial image (adaptive attack). sarial image (adaptive attack).
(adaptive attack).

Figure 10. Detection results of different defense methods on the xView dataset. The adversarial patches are 100 x 100 squares and placed at
the same location. JPEG [1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend
adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC
can defend both non-adaptive and adaptive attacks and maintains high image quality.

11

CVPR
#8898

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

CVPR
#8898

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on the clean image. (b) Predictions on the PGD adversarial im- (c) Predictions on the MIM adversarial im- (d) Prediction on the DPatch adversarial
age. age. image (undefended).
(e) Predictions on the clean image. (f) Predictions on the SAC masked PGD (g) Predictions on the SAC masked MIM (h) Predictions on the SAC masked DPatch
adversarial image. adversarial image. adversarial image.

Figure 11. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is
taken from the COCO dataset. The adversarial patches are 100 x 100 squares and placed at the same location.

(a) Ground-truth on the clean image. (b) Predictions on the PGD adversarial im- (c) Predictions on the MIM adversarial im- (d) Prediction on the DPatch adversarial
age. age. image (undefended).
(e) Predictions on the clean image. (f) Predictions on the SAC masked PGD (g) Predictions on the SAC masked MIM (h) Predictions on the SAC masked DPatch
adversarial image. adversarial image. adversarial image.

Figure 12. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is
taken from the xView dataset. The adversarial patches are 100 x 100 squares and placed at the same location.

12

CVPR
#8898

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

CVPR
#8898

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on the clean image. (b) Predictions on the adversarial image (c) Predictions on the adversarial image (d) Predictions on the adversarial image
with a circle patch. with a rectangle patch. with a ellipse patch.
(e) Predictions on the clean image. (f) Predictions on the SAC masked adver- (g) Predictions on the SAC masked adver- (h) Predictions on the SAC masked adver-
sarial image with a circle patch. sarial image with a rectangle patch. sarial image with an ellipse patch.

Figure 13. Detection results on adversarial images with different patch shapes. The image is taken from the COCO dataset. The adversarial
patches have 100 x 100 pixels and placed at the same location.

(a) Ground-truth. (b) Predictions on the adversarial image (c) Predictions on the adversarial image (d) Predictions on the adversarial image
with a circle patch. with a rectangle patch. with a ellipse patch.
(e) Predictions on the clean image. (f) Predictions on the SAC masked adver- (g) Predictions on the SAC masked adver- (h) Predictions on the SAC masked adver-
sarial image with a circle patch. sarial image with a rectangle patch. sarial image with an ellipse patch.

Figure 14. Detection results on adversarial images with different patch shapes. The image is taken from the xView dataset. The adversarial
patches have 100 x 100 pixels and placed at the same location.

13

CVPR
#8898

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

CVPR CVPR

#8898 #8898
CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1404 1458
1405 1459
1406 1460
1407 1461
1408 1462
1409 1463
1410 1464
1411 1465
1412 1466
1413 1467
1414 1468
1415 1469
1416 1470
1417 1471
1418 1472
1419 1473
1420 1474
1421 1475
1422 1476
1423 1477
1424 1478
1425 1479
1426 1480
1427 1481
1428 1482
1429 1483
1430 1484
1431 1485
1432 1486
1433 1487
1434 1488
1435 1489
1436 1490
1437 1491
1438 1492
1439 1493
1440 1494
1441 1495
1442 1496
1443 1497
1444 1498
1445 (a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images. 1499
::23 Figure 15. Examples of failure cases. Row 1: SAC fails to detect and remove the adversarial patch, which happens very rarely. Row 2: ::g?
the black block from masking out the patch creates a false detection of “TV”. Row 3: the black block from masking out the patch cover
1448 . - L . 1502
foreground objects. See the discussion in Section B.5.5.
1449 1503
1450 1504
1451 1505
1452 1506
1453 1507
1454 1508
1455 1509
1456 1510
1457 1511

14

CVPR
#8898

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Gintare Karolina Dziugaite, Zoubin Ghahramani, and
Daniel M Roy. A study of the effect of JPG
compression on adversarial images. arXiv preprint
arXiv:1608.00853, 2016. 1, 5, 10, 11

Muzammal Naseer, Salman Khan, and Fatih Porikli.
Local gradients smoothing: Defense against localized
adversarial attacks. In 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages
1300-1307. IEEE, 2019. 1, 5, 10, 11

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-Net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention,
pages 234-241. Springer, 2015. 1

Geoffrey Hinton, Nitish Srivastava, and Kevin Swer-
sky. Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. Cited on,
14(8), 2012. 1

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks. In Proceedings
of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 1, NIPS’15, page
91-99, Cambridge, MA, USA, 2015. MIT Press. 2

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Chris-
tian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexan-
der C Berg. SSD: Single shot multibox detector. In
European Conference on Computer Vision, pages 21—
37. Springer, 2016. 2

Sébastien Marcel and Yann Rodriguez. Torchvision the
machine-vision package of torch. In Proceedings of
the 18th ACM International Conference on Multimedia,
MM ’10, page 1485-1488, New York, NY, USA, 2010.
Association for Computing Machinery. 2

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017. 2, 5, 6

Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song,
Hai Li, and Yiran Chen. DPatch: An adversar-
ial patch attack on object detectors. arXiv preprint
arXiv:1806.02299, 2018. 2, 6

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang
Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9185-9193, 2018. 2,6

15

[11] Yoshua Bengio,

[12] Weilin Xu, David Evans, and Yanjun Qi.

Nicholas Léonard, and Aaron
Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432, 2013. 3

Feature
squeezing: Detecting adversarial examples in deep neu-
ral networks. arXiv preprint arXiv:1704.01155, 2017.
5,10, 11

CVPR
#8898

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

	. Baselines Details
	. SAC Details
	. Training the Patch Segmenter
	. Different Patch Shapes for Evaluating SAC
	. Evaluate SAC with SSD
	. Shape Completion Details
	Dynamic Programming for Shape Completion
	Adjusting
	Adaptive attacks on Shape Completion
	Patch Visualization
	Visualization of Shape Completion Outputs

	. Visualization of Detection Results
	SAC under Adaptive Attacks
	SAC v.s. Baselines
	SAC under Different Attack Methods
	SAC under Different Patch Shapes
	Failure Cases

