

000

Supplementary Material

001

A. Baselines Details

004

For JPEG compression [1], we set the quality parameter to 50. For spatial smoothing, we use window size 3. For LGS [2], we set the block size to 30, overlap to 5, threshold to 0.1, and smoothing factor to 2.3. For AT, we use PGD attacks with 30 iterations and step size 0.067, which takes around twelve hours per epoch on the xView training set and thirty-two hours on COCO using ten GPUs. We use SGD optimizers with an initial learning rate of 0.01, momentum 0.9, weight decay 5×10^{-4} , and batch size 10. We train each model with ten epochs. There is a possibility that the AT models would perform better if we train them longer or tune the training hyper-parameters. However, we were unable to do so due to the extremely expensive computation needed.

017

B. SAC Details

018

B.1. Training the Patch Segmenter

019

COCO and xView datasets We use U-Net [3] with 16 initial filters as the patch segmenter on the COCO and xView datasets. To train the patch segmenters, for each dataset we generate 55k fixed adversarial images from the training set with a patch size 100×100 by attacking base object detectors, among which 50k are used for training and 5k for validation. We randomly replace each adversarial image with its clean counterpart with a probability of 30% during training to ensure good performance on clean data. All images are cropped to squares and resized to 500×500 during training. We use RMSprop [4] optimizer with an initial learning rate of 10^{-4} , momentum 0.9, weight decay 10^{-8} , and batch size 16. We train patch segmenters for five epochs and evaluate them on the validation set five times in each epoch. We reduce the learning rate by a factor of ten if there is no improvement after two evaluations. For self adversarial training, we train each model for one epoch with $\lambda = 0.3$ using PGD attacks with 200 iterations and step size $\alpha = 0.01$, which takes around eight hours on COCO and four hours on xView using ten GPUs.

041

APRICOT dataset Detecting adversarial patches in the physical world can be more challenging, as the shape and appearance of patches can vary a lot under different viewing angles and lighting conditions. For the APRICOT dataset, We use U-Net [3] with 64 initial filters as the patch segmenter. We downscale each image by a factor of two during training and evaluation to save memory as each image is approximately 12 megapixels (e.g., 4000×3000 pixels). We use 85% of the APRICOT test set (742 images) as the training set, and the rest (131 images) as the validation set. During training, we randomly crop 500×500 image patches from the downscale images, with a probability of 60% that

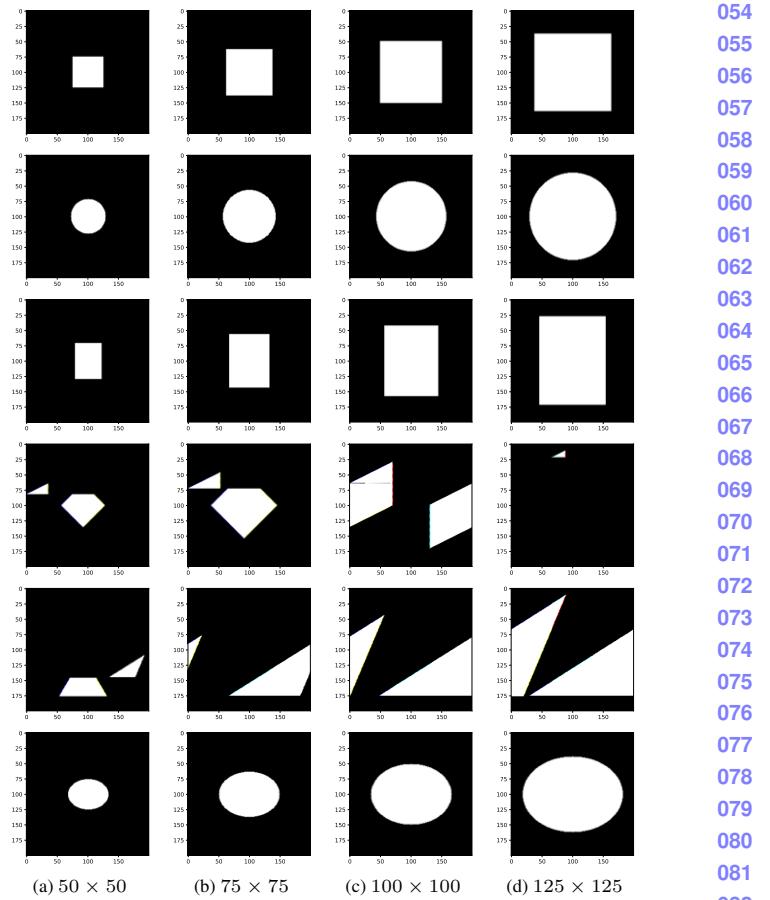


Figure 1. Different shapes used for evaluating SAC. From top to bottom: square, circle, rectangle, diamond, triangle, and ellipse. Shapes in each column have approximately the same $n \times n$ pixels, where $n \in \{50, 75, 100, 125\}$.

an image patch contain an adversarial patch and 40% that it contain no patch. We use RMSprop [4] optimizer with an initial learning rate of 10^{-3} , momentum 0.9, weight decay 10^{-8} , and batch size 24. We train patch segmenters for 100 epochs, and reduce the learning rate by a factor of ten if the dice score on the validation set has no improvement after 10 epochs. After training, we pick the checkpoint that has the highest dice score on the validation set as our final model. The training takes around four hours on six gpus.

B.2. Different Patch Shapes for Evaluating SAC

In the main paper, we demonstrate generalization to unseen patch shapes that were not considered in training the patch segmenter and in shape completion, obtaining surprisingly good robust performance. The shapes used for evaluating SAC are shown in Fig. 1.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

B.3. Evaluate SAC with SSD

We use Faster R-CNN [5] as our base object detector in the main paper. However, SAC is compatible with any object detector as it is a pre-processing defense. In this section, we show the performance of SAC using SSD [6] as the base object detector on the COCO dataset. The pre-trained SSD model is provided in `torchvision` [7]. We do not re-train the patch segmenter for SSD as the self adversarial training on the patch segmenter is object-detector agnostic. Results shown in Table 1 demonstrate that SAC can also provide strong robustness for SSD across different attack methods and patch sizes.

Table 1. mAP (%) under different attack methods using SSD as the base object detector. The mAP on clean images is 44.5% for the undefended model and 44.4% for the SAC defended model.

Attack	Method	75×75	100×100	125×125
PGD [8]	Undefended	18.3±0.4	11.4±0.2	7.0±0.1
	SAC (Ours)	39.1±0.3	38.8±0.2	34.2±0.1
DPatch [9]	Undefended	21.5±0.8	16.9±0.2	12.5±0.6
	SAC (Ours)	39.9±0.2	39.1±0.1	35.4±0.3
MIM [10]	Undefended	17.6±0.5	10.4±0.2	6.0±0.2
	SAC (Ours)	37.9±0.2	38.5±0.1	35.0±0.3

B.4. Shape Completion Details

B.4.1 Dynamic Programming for Shape Completion

Recall that our shape-completed mask is defined as:

$$\hat{M}_{SC(i,j)} := \begin{cases} 1 & \text{if } \exists i', j' : M_{(i',j')}^{s,(i',j')} = 1 \text{ and} \\ & \frac{d_H(\hat{M}_{PS}, M^{s,(i',j')})}{s^2} \leq \gamma \\ 0 & \text{otherwise.} \end{cases} \quad (1)$$

Here, we give a dynamic-programming based $O(H \times W)$ time algorithm for computing this mask.

We first need to define the following $O(H \times W)$ time subroutine: for an $H \times W$ binary matrix M , let $\text{Cuml.}(M)$ be defined as follows:

$$\text{Cuml.}(M)_{(i,j)} := \sum_{i'=1}^i \sum_{j'=1}^j M_{(i',j')} \quad (2)$$

The entire matrix $\text{Cuml.}(M)$ can be computed in $O(H \times W)$ as follows. We first define $\text{Cuml.}^x(M)$ as:

$$\text{Cuml.}^x(M)_{(i,j)} := \sum_{i'=1}^i M_{(i',j)} \quad (3)$$

Note that $\text{Cuml.}^x(M)_{(1,j)} = M_{(1,j)}$ and that, for $i > 1$,

$$\text{Cuml.}^x(M)_{(i,j)} := M_{(i,j)} + \text{Cuml.}^x(M)_{(i-1,j)} \quad (4)$$

We can then construct $\text{Cuml.}^x(M)$ row-by-row along the index i , with each cell taking constant time to fill: therefore $\text{Cuml.}^x(M)$ is constructed in $O(H \times W)$ time. $\text{Cuml.}(M)$ can then be constructed through two applications of this algorithm as:

$$\text{Cuml.}(M) = (\text{Cuml.}^x((\text{Cuml.}^x(M))^T))^T \quad (5)$$

We now apply this algorithm to \hat{M}_{PS} :

$$\text{Cuml.}^x(\hat{M}_{PS}) := \text{Cuml.}(\hat{M}_{PS}). \quad (6)$$

Note that, for each i, j :

$$\begin{aligned} d_H(\hat{M}_{PS}, M^{s,(i,j)}) &= \sum_{\substack{i' \in [i,i+s] \\ j' \in [j,j+s]}} (1 - \hat{M}_{PS,(i',j')}) + \sum_{\substack{i' \notin [i,i+s] \vee \\ j' \notin [j,j+s]}} \hat{M}_{PS,(i',j')} \\ &= s^2 - \sum_{\substack{i' \in [i,i+s] \\ j' \in [j,j+s]}} \hat{M}_{PS,(i',j')} + \sum_{\substack{i' \notin [i,i+s] \vee \\ j' \notin [j,j+s]}} \hat{M}_{PS,(i',j')} \\ &= s^2 + \sum_{(i',j')} \hat{M}_{PS,(i',j')} - 2 \sum_{\substack{i' \in [i,i+s] \\ j' \in [j,j+s]}} \hat{M}_{PS,(i',j')} \\ &= s^2 + \text{Cuml.}^x(\hat{M}_{PS}) - 2 \left(\sum_{\substack{i' \in [1,i+s] \\ j' \in [1,j+s]}} \hat{M}_{PS,(i',j')} - \right. \\ &\quad \left. \sum_{\substack{i' \in [1,i] \\ j' \in [1,j+s]}} \hat{M}_{PS,(i',j')} - \sum_{\substack{i' \in [1,i+s] \\ j' \in [1,j]}} \hat{M}_{PS,(i',j')} + \sum_{\substack{i' \in [1,i] \\ j' \in [1,j]}} \hat{M}_{PS,(i',j')} \right) \\ &= s^2 + \text{Cuml.}^x(\hat{M}_{PS}) - 2 \left(\text{Cuml.}^x(\hat{M}_{PS,(i+s-1,j+s-1)}) \right. \\ &\quad \left. - \text{Cuml.}^x(\hat{M}_{PS,(i-1,j+s-1)}) - \text{Cuml.}^x(\hat{M}_{PS,(i+s-1,j-1)}) \right. \\ &\quad \left. + \text{Cuml.}^x(\hat{M}_{PS,(i-1,j-1)}) \right) \end{aligned} \quad (7)$$

(We are disregarding edge cases where $i + s > H$ or $j + s > W$: these can be easily reasoned about.) Using a pre-computed $\text{Cuml.}^x(\hat{M}_{PS})$, we can then compute each of these Hamming distances in constant time. We can then, in $O(H \times W)$ time, compute the matrix \hat{M}_γ :

$$\hat{M}_{\gamma,(i,j)} := \mathbb{1}_{\frac{d_H(\hat{M}_{PS}, M^{s,(i,j)})}{s^2} \leq \gamma} \quad (8)$$

where $\mathbb{1}$ denotes an indicator function. We also pre-compute the cumulative sums of this matrix:

$$\text{Cuml.}^x(\hat{M}_\gamma) := \text{Cuml.}(\hat{M}_\gamma) \quad (9)$$

216 Now, recall the condition of Eq. (1):
 217

$$\begin{aligned}
 & \exists i', j' : M_{(i,j)}^{s,(i',j')} = 1 \text{ and } \frac{d_H(\hat{M}_{PS}, M^{s,(i',j')})}{s^2} \leq \gamma \\
 \iff & \exists i', j' : M_{(i,j)}^{s,(i',j')} = 1 \text{ and } \hat{M}_{\gamma,(i',j')} = 1 \\
 \iff & \sum_{\substack{i' \in (i-s, i] \\ j' \in (j-s, j]}} \hat{M}_{\gamma,(i',j')} \geq 1 \\
 \iff & \left(\sum_{\substack{i' \in [1, i] \\ j' \in [1, j]}} \hat{M}_{\gamma,(i',j')} - \sum_{\substack{i' \in [1, i-s] \\ j' \in [1, j]}} \hat{M}_{\gamma,(i',j')} \right. \\
 & \quad \left. - \sum_{\substack{i' \in [1, i] \\ j' \in [1, j-s]}} \hat{M}_{\gamma,(i',j')} + \sum_{\substack{i' \in [1, i-s] \\ j' \in [1, j-s]}} \hat{M}_{\gamma,(i',j')} \right) \geq 1 \\
 \iff & (\text{Cuml}\hat{M}_{\gamma,(i,j)} - \text{Cuml}\hat{M}_{\gamma,(i-s,j)} \\
 & \quad - \text{Cuml}\hat{M}_{\gamma,(i,j-s)} + \text{Cuml}\hat{M}_{\gamma,(i-s,j-s)}) \geq 1
 \end{aligned} \tag{10}$$

228 Again, this can be computed in constant time for each index. Let $\hat{C}_{\gamma,(i,j)} := \text{Cuml}\hat{M}_{\gamma,(i,j)} - \text{Cuml}\hat{M}_{\gamma,(i-s,j)} - \text{Cuml}\hat{M}_{\gamma,(i,j-s)} + \text{Cuml}\hat{M}_{\gamma,(i-s,j-s)}$, then Eq. (1) becomes simply:

$$\hat{M}_{SC(i,j)} := \mathbb{1}_{\hat{C}_{\gamma,(i,j)} \geq 1} \tag{11}$$

243 This gives us an overall runtime of $O(H \times W)$ as desired. Note that in our PyTorch implementation, we are able to use 244 tensor operations such that no explicit iteration over indices 245 is necessary at any point in the algorithm.

248 B.4.2 Adjusting γ

250 In practice, the method described above can be highly sensitive 251 to the hyperparameter γ . If γ is set too low, then no 252 candidate mask $M^{s,(i',j')}$ will be sufficiently close to \hat{M}_{PS} , 253 so the detector will return nothing. However, if γ is set too 254 high, then the shape completion will be too conservative, 255 masking a large area of possible candidate patches. (Note 256 that $\gamma \geq 1$ is not usable, because it would cover an image 257 entirely with a mask even when $\hat{M}_{PS} = \mathbf{0}$.) To deal with this 258 issue, we initially use low values of γ , and then gradually 259 increase γ if no mask is initially returned – stopping when 260 either some mask is returned or a maximum value is reached, 261 at which point we assume that there is no ground-truth 262 adversarial patch. Specifically, for iteration $t = 1, \dots, T$, we 263 set

$$\gamma_t := 1 - \alpha\beta^{(t-1)},$$

265 where $T \in \mathbb{N}$, and $\alpha, \beta < 1$. We then return the first nonzero 266 $\hat{M}_{SC}(S, \gamma_t)$, or an empty mask if this does not occur. We 267 set $\alpha = 0.9$, $\beta = 0.7$, $T = 15$. The values of α , β and T are 268 tuned using grid search on a validation set with 200 images 269 from the xView dataset (See Figure 2).

α	β	T	Benign mAP	Patch size 100: Adversarial mAP	Patch size 75: Adversarial mAP	Patch size 50: Adversarial mAP	270
0.6	0.6	5	0.231	0.166	0.169	0.166	271
0.6	0.6	10	0.231	0.173	0.176	0.188	272
0.6	0.6	15	0.231	0.172	0.183	0.191	273
0.6	0.7	5	0.231	0.157	0.165	0.162	274
0.6	0.7	10	0.230	0.172	0.179	0.181	275
0.6	0.7	15	0.230	0.174	0.184	0.179	276
0.6	0.8	5	0.231	0.142	0.163	0.164	277
0.6	0.8	10	0.231	0.169	0.172	0.151	278
0.6	0.8	15	0.231	0.169	0.171	0.178	279
0.6	0.9	5	0.231	0.140	0.142	0.147	280
0.6	0.9	10	0.231	0.153	0.143	0.163	281
0.6	0.9	15	0.231	0.168	0.160	0.156	282
0.7	0.6	5	0.231	0.172	0.167	0.178	283
0.7	0.6	10	0.230	0.170	0.173	0.173	284
0.7	0.6	15	0.230	0.170	0.184	0.192	285
0.7	0.7	5	0.231	0.146	0.161	0.168	286
0.7	0.7	10	0.231	0.166	0.178	0.180	287
0.7	0.7	15	0.230	0.179	0.174	0.184	288
0.7	0.8	5	0.231	0.147	0.141	0.170	289
0.7	0.8	10	0.231	0.174	0.153	0.166	290
0.7	0.8	15	0.231	0.161	0.164	0.176	291
0.7	0.9	5	0.231	0.121	0.144	0.137	292
0.7	0.9	10	0.231	0.153	0.152	0.161	293
0.7	0.9	15	0.231	0.156	0.162	0.167	294
0.8	0.6	5	0.231	0.174	0.160	0.166	295
0.8	0.6	10	0.230	0.171	0.178	0.189	296
0.8	0.6	15	0.230	0.173	0.172	0.191	297
0.8	0.7	5	0.231	0.159	0.152	0.165	298
0.8	0.7	10	0.231	0.167	0.164	0.177	299
0.8	0.7	15	0.230	0.173	0.177	0.190	300
0.8	0.8	5	0.231	0.135	0.136	0.160	301
0.8	0.8	10	0.231	0.155	0.168	0.173	302
0.8	0.8	15	0.231	0.175	0.173	0.178	303
0.8	0.9	5	0.231	0.132	0.117	0.155	304
0.8	0.9	10	0.231	0.147	0.160	0.148	305
0.8	0.9	15	0.231	0.170	0.170	0.166	306
0.9	0.6	5	0.231	0.156	0.173	0.168	307
0.9	0.6	10	0.230	0.171	0.162	0.170	308
0.9	0.6	15	0.230	0.172	0.180	0.179	309
0.9	0.7	5	0.231	0.152	0.148	0.165	310
0.9	0.7	10	0.231	0.175	0.168	0.173	311
0.9	0.7	15	0.230	0.175	0.180	0.192	312
0.9	0.8	5	0.231	0.141	0.144	0.155	313
0.9	0.8	10	0.231	0.152	0.171	0.168	314
0.9	0.8	15	0.231	0.166	0.181	0.176	315
0.9	0.9	5	0.231	0.125	0.126	0.127	316
0.9	0.9	10	0.231	0.154	0.148	0.145	317
0.9	0.9	15	0.231	0.162	0.157	0.163	318

Figure 2. Validation set performance on xView under adaptive attack, as a function of defense hyperparameters α, β, T used for searching over γ . Within each column, more green shading indicates higher mAP.

B.4.3 Adaptive attacks on Shape Completion

To attack the patch segmenter, we use a straight-through estimator (STE) [11] at the thresholding step: $\hat{M}_{PS} = PS_\theta(x) > 0.5$. To attack the shape completion algorithm, we have tried the following attacks:

BPDA Attack Note that the algorithm described in Section B.4.1 involves two non-differentiable thresholding steps (Eq. (8) and Eq. (11)). In order to implement an adaptive attack, at these steps, we use BPDA, using a STE for the gradient at each thresholding step. When aggregating masks

324 which assume patches of different sizes (Equation 9 in the
 325 main text) we also use a straight-through estimator on a
 326 thresholded sum of masks. This is the strongest adaptive
 327 attack for SAC that we found and we use this attack in the
 328 main paper.
 329

330 **γ -Search STE Attack** There is an additional non-
 331 differentiable step in the defense, however: the search over
 332 values of γ described in Section B.4.2. In order to deal with
 333 this, we attempted to use BPDA as well, using the following
 334 recursive formulation:
 335

$$\begin{aligned} \hat{M}_{SC}(S)_{\alpha,\beta,0} &:= \mathbf{0} \\ \hat{M}_{SC}(S)_{\alpha,\beta,T} &:= \hat{M}_{SC}(S, 1 - \alpha) \\ &+ \mathbb{1}_{\frac{\sum \hat{M}_{SC}(S, 1 - \alpha)}{C} < 1} \hat{M}_{SC}(S)_{\alpha*\beta, \beta, T-1} \quad (\text{for } T \geq 1) \end{aligned} \quad (12)$$

340 Where C is the area of the smallest considered patch size in
 341 S (i.e., the minimum nonzero shape completion output).
 342

343 We can then use a STE for the indicator function. However,
 344 this technique turns out to yield worse performance
 345 in practice than simply treating the search over γ as non-
 346 differentiable (See Fig. 3). Therefore, in our main results,
 347 we treat this search over γ as non-differentiable, rather than
 348 using an STE.
 349

350 **Log-Sum-Exp Transfer Attack** We were also initially
 351 concerned that the simple straight-through estimation ap-
 352 proach for the algorithm described in Section B.4.1 might
 353 fail, specifically at the point of Eq. (11), where the threshold
 354 takes the form (see Eq. (10)):

$$\sum_{\substack{i' \in (i-s, i] \\ j' \in (j-s, j]}} \hat{M}_{\gamma, (i', j')} \geq 1 \quad (13)$$

355 where $\hat{M}_{\gamma, (i', j')}$ is a 0/1 indicator of whether a patch should
 356 be added to the final output mask with upper-left corner
 357 (i', j') . We were concerned that a straight-through estimator
 358 would propagate gradients to *the sum directly*, affecting *every*
 359 *potential* patch which could cover a location (i, j) , rather
 360 than concentrating the gradient only on those patches that
 361 *actually* contribute to the pixel (i, j) being masked.
 362

363 To mitigate this, we first considered the equivalent thresh-
 364 old condition:
 365

$$\max_{\substack{i' \in (i-s, i] \\ j' \in (j-s, j]}} \hat{M}_{\gamma, (i', j')} \geq 1 \quad (14)$$

366 While logically equivalent, the gradient propagated by the
 367 STE to the LHS would now only propagate on to the values
 368 $\hat{M}_{\gamma, (i', j')}$ which are equal to 1. However, unfortunately, this
 369 formulation is not compatible with the dynamic program-
 370 ming algorithm described in Section B.4.1: due to computa-
 371 tional limitations, we do not want to compute the maximum
 372 over every pair (i', j') , *for each pair* (i, j) .
 373

α	β	T	Benign mAP	Patch size 100: Adversarial mAP	Patch size 75: Adversarial mAP	Patch size 50: Adversarial mAP	
0.6	0.6	5	0	0.003	0.028	0.036	378
0.6	0.6	10	0	-0.006	0.018	0.007	379
0.6	0.6	15	0	-0.002	0.011	0.002	380
0.6	0.7	5	0	0.012	0.030	0.033	381
0.6	0.7	10	0	-0.005	0.014	0.020	382
0.6	0.7	15	0	-0.006	0.011	0.014	383
0.6	0.8	5	0	0.025	0.029	0.032	384
0.6	0.8	10	0	0.001	0.018	0.053	385
0.6	0.8	15	0	0.001	0.020	0.016	386
0.6	0.9	5	0	0.025	0.046	0.046	387
0.6	0.9	10	0	0.013	0.050	0.031	388
0.6	0.9	15	0	0.002	0.028	0.037	389
0.7	0.6	5	0	0.003	0.018	0.025	390
0.7	0.6	10	0	0.010	0.013	0.025	391
0.7	0.6	15	0	0.000	-0.002	0.003	392
0.7	0.7	5	0	0.026	0.028	0.038	393
0.7	0.7	10	0	0.002	0.008	0.022	394
0.7	0.7	15	0	-0.009	0.009	0.017	395
0.7	0.8	5	0	0.022	0.047	0.033	396
0.7	0.8	10	0	-0.001	0.034	0.036	397
0.7	0.8	15	0	0.015	0.022	0.025	398
0.7	0.9	5	0	0.052	0.043	0.060	399
0.7	0.9	10	0	0.018	0.036	0.034	400
0.7	0.9	15	0	0.016	0.020	0.029	401
0.8	0.6	5	0	0.001	0.023	0.035	402
0.8	0.6	10	0	0.004	0.009	0.006	403
0.8	0.6	15	0	0.002	0.017	0.012	404
0.8	0.7	5	0	0.017	0.034	0.033	405
0.8	0.7	10	0	0.013	0.025	0.034	406
0.8	0.7	15	0	0.004	0.012	0.008	407
0.8	0.8	5	0	0.038	0.054	0.037	408
0.8	0.8	10	0	0.018	0.019	0.025	409
0.8	0.8	15	0	0.000	0.016	0.017	410
0.8	0.9	5	0	0.045	0.073	0.045	411
0.8	0.9	10	0	0.025	0.028	0.049	412
0.8	0.9	15	0	0.004	0.019	0.032	413
0.9	0.6	5	0	0.024	0.022	0.025	414
0.9	0.6	10	0	0.003	0.030	0.038	415
0.9	0.6	15	0	0.001	0.002	0.028	416
0.9	0.7	5	0	0.029	0.045	0.030	417
0.9	0.7	10	0	0.011	0.024	0.020	418
0.9	0.7	15	0	-0.002	0.011	0.004	419
0.9	0.8	5	0	0.038	0.041	0.043	420
0.9	0.8	10	0	0.029	0.018	0.028	421
0.9	0.8	15	0	0.011	0.006	0.028	422
0.9	0.9	5	0	0.052	0.068	0.073	423
0.9	0.9	10	0	0.025	0.046	0.063	424
0.9	0.9	15	0	0.016	0.037	0.035	425

Figure 3. Difference in mAP under BPDA attack using STE gradients for the search over γ (as in Eq. (12)) versus simply treating the search as non-differentiable, on 200-image xView validation set. Positive numbers (green) indicate that the non-differentiable treatment yielded a more successful attack, while negative numbers (red) indicate that the STE treatment was more successful. We see that in most hyperparameter settings, the STE treatment of the search over γ made the attack less successful, and in no setting did it make the attack substantially more successful.

To solve this problem, we instead used the following proxy function when generating attack gradients (including during the forward pass):

$$\log \left(\sum_{\substack{i' \in (i-s, i] \\ j' \in (j-s, j]}} e^{C \cdot \hat{M}_{\gamma, (i', j')}} \right) / C \geq 1 \quad (15)$$

432 where C is a large constant (we use $C = 10 \log(100)$). This
 433 is the ‘‘LogSumExp’’ softmax function: note that the LHS is
 434 approximately 1 if any $\hat{M}_{\gamma, (i', j')}$ is one and approximately
 435 zero otherwise. Also note that the derivative of the LHS
 436 with respect to each $\hat{M}_{\gamma, (i', j')}$ is similarly approximately 1
 437 if $\hat{M}_{\gamma, (i', j')}$ is one and zero otherwise. Crucially, we can
 438 compute this in the above DP framework, simply by replacing
 439 $\hat{M}_{\gamma, (i', j')}$ with its exponent (and taking the log before
 440 thresholding).

441 However, in practice, the naive BPDA attack outperforms
 442 this adaptive attack (Fig. 4). This is likely because the condition
 443 in Eq. (15) is an inexact approximation, so the function
 444 being attacked differs from the true objective. (In both at-
 445 tacks, we treat the search over γ as nondifferentiable, as
 446 described above.)

447 B.4.4 Patch Visualization

448 We find that adaptive attacks on models with SC would force
 449 the attacker to generate patches that have more structured
 450 noises trying to fool SC (see Fig. 5).

451 B.4.5 Visualization of Shape Completion Outputs

452 We provide several examples of shape completion outputs
 453 in Fig. 6. The outputs of the patch segmenter can be dis-
 454 turbed by the attacker such that some parts of the adversarial
 455 patches are not detected, especially under adaptive attacks.
 456 Given the output mask of the patch segmenter, the proposed
 457 shape completion algorithm generates a ‘‘completed patch
 458 mask’’ to cover the entire adversarial patches.

459 B.5. Visualization of Detection Results

460 B.5.1 SAC under Adaptive Attacks

461 We provide several examples of SAC under adaptive attacks
 462 in Fig. 7 and Fig. 8. Adversarial patches create spurious
 463 detections, and make the detector ignore the ground-truth
 464 objects. SAC can detect and remove the adversarial patches
 465 even under strong adaptive attacks, and therefore restore
 466 model predictions.

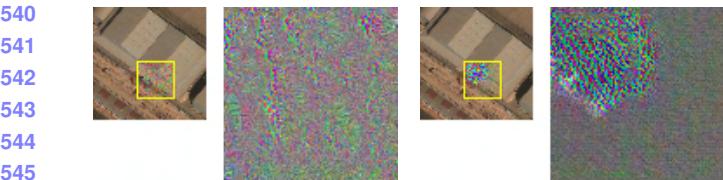
467 B.5.2 SAC v.s. Baselines

468 In this paper, we compare SAC with JPEG [1], Spatial
 469 Smoothing [12], LGS [2], and vanilla adversarial training
 470 (AT) [8]. Visual comparisons are shown in Fig. 9 and Fig. 10.
 471 JPEG, Spatial Smoothing, LGS are pre-processing defenses
 472 that aim to remove the high-frequency information of ad-
 473 versarial patches. They have reasonable performance under
 474 non-adaptive attacks, but can not defend adaptive attacks
 475 where the adversary also attacks the pre-process functions.
 476 In addition, they degrade image quality, especially LGS,
 477 which degrades their performance on clean images. SAC

α	β	T	Benign mAP	Patch size 100: Adversarial mAP	Patch size 75: Adversarial mAP	Patch size 50: Adversarial mAP	
0.6	0.6	5	0	0.008	0.014	0.031	486
0.6	0.6	10	0	0.003	0.011	0.015	487
0.6	0.6	15	0	0.007	-0.003	0.011	488
0.6	0.7	5	0	0.018	0.020	0.043	489
0.6	0.7	10	0	0.007	0.009	0.016	490
0.6	0.7	15	0	-0.001	0.000	0.031	491
0.6	0.8	5	0	0.037	0.023	0.041	492
0.6	0.8	10	0	0.013	0.019	0.047	493
0.6	0.8	15	0	0.008	0.021	0.020	494
0.6	0.9	5	0	0.041	0.051	0.046	495
0.6	0.9	10	0	0.027	0.049	0.038	496
0.6	0.9	15	0	0.015	0.034	0.045	497
0.7	0.6	5	0	0.002	0.026	0.019	498
0.7	0.6	10	0	0.007	0.016	0.019	499
0.7	0.6	15	0	0.004	0.008	0.000	500
0.7	0.7	5	0	0.029	0.044	0.033	501
0.7	0.7	10	0	0.014	0.011	0.014	502
0.7	0.7	15	0	0.001	0.023	0.018	503
0.7	0.8	5	0	0.030	0.053	0.029	504
0.7	0.8	10	0	-0.001	0.032	0.034	505
0.7	0.8	15	0	0.014	0.019	0.023	506
0.7	0.9	5	0	0.063	0.049	0.058	507
0.7	0.9	10	0	0.027	0.036	0.035	508
0.7	0.9	15	0	0.029	0.036	0.033	509
0.8	0.6	5	0	0.012	0.042	0.039	510
0.8	0.6	10	0	0.018	0.014	0.018	511
0.8	0.6	15	0	0.013	0.028	0.017	512
0.8	0.7	5	0	0.027	0.042	0.044	513
0.8	0.7	10	0	0.018	0.024	0.031	514
0.8	0.7	15	0	0.017	0.018	0.021	515
0.8	0.8	5	0	0.054	0.061	0.042	516
0.8	0.8	10	0	0.031	0.028	0.034	517
0.8	0.8	15	0	0.009	0.032	0.024	518
0.8	0.9	5	0	0.051	0.087	0.048	519
0.8	0.9	10	0	0.042	0.042	0.061	520
0.8	0.9	15	0	0.014	0.035	0.041	521
0.9	0.6	5	0	0.027	0.023	0.032	522
0.9	0.6	10	0	0.011	0.034	0.040	523
0.9	0.6	15	0	0.006	0.012	0.030	524
0.9	0.7	5	0	0.034	0.045	0.039	525
0.9	0.7	10	0	0.012	0.034	0.036	526
0.9	0.7	15	0	0.011	0.027	0.013	527
0.9	0.8	5	0	0.050	0.054	0.053	528
0.9	0.8	10	0	0.033	0.027	0.031	529
0.9	0.8	15	0	0.021	0.015	0.034	530
0.9	0.9	5	0	0.063	0.077	0.079	531
0.9	0.9	10	0	0.029	0.051	0.059	532
0.9	0.9	15	0	0.023	0.056	0.037	533

Figure 4. Difference in mAP using Log-Sum-Exp approximation for Eq. (11) as described in Eq. (15) versus the naive BPDA attack we ultimately used, on 200-image xView validation set. Positive numbers (green) indicate that the naive BPDA attack yielded a more successful attack, while negative numbers (red) indicate that the Log-Sum-Exp treatment was more successful. We see that in most hyperparameter settings, the Log-Sum-Exp technique made the attack less successful, and in no setting did it make the attack substantially more successful.

can defend both non-adaptive and adaptive attacks. In addition, SAC does not degrade image quality, and therefore can maintain high performance on clean images.



(a) Patch for SAC without SC. (b) Patch for SAC with SC.

Figure 5. 100×100 adversarial patches generated by adaptive attacks on xView dataset. Patches for SAC without shape completion (SC) have widespread noises in the square bounded area, while patches for SAC with SC have structured noises.

distort the pixels and destroy all the information within the patch such as in physical patch attacks, there is no chance that we can detect the objects hiding behind the adversarial patches. However, in the case where the patches are less visible, some information may be preserved in the patched area. We can potentially impaint or reconstruct the content within the patches to help detection.

B.5.3 SAC under Different Attack Methods

We visualize the detection results of SAC under different attacks in Fig. 11 and Fig. 12, including PGD [8], MIM [10] and DPatch [9]. SAC can effectively detect and remove the adversarial patches under different attacks and restore the model predictions. We also notice that the adversarial patches generated by different methods has different styles. PGD generated adversarial patches are less visible, even though it has the same $\epsilon = 1$ attack budget.

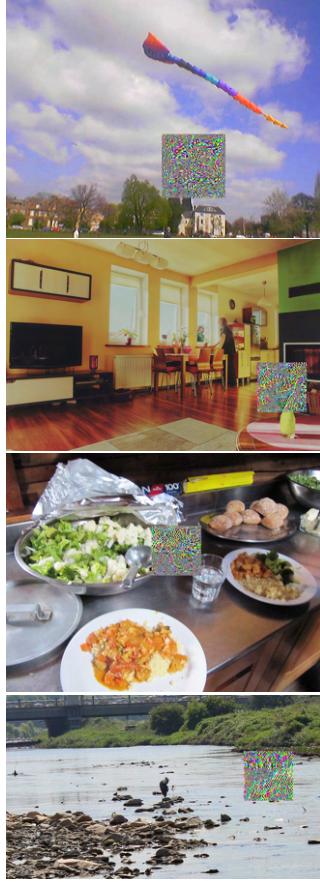
B.5.4 SAC under Different Patch Shapes

We visualize the detection results of SAC under PGD attacks with unseen patch shapes in Fig. 13 and Fig. 14, including circle, rectangle and ellipse. SAC can effectively detect and remove the adversarial patches of different shapes and restore the model predictions, even though those shapes are used in training the patch segmenter and mismatch the square shape prior in shape completion. However, we do notice that masked region can be larger than the original patches as SAC tries to cover the patch with square shapes.

B.5.5 Failure Cases

There are several failure modes in SAC: 1) SAC completely fails to detect a patch (*e.g.*, Fig. 15 row 1), which happens very rarely; 2) SAC successfully detects and removes a patch, but the black blocks from patch removing causes misdetection (*e.g.*, Fig. 15 row 2), which happens more often on the COCO dataset since black blocks resemble some object categories in the dataset such as TV, traffic light, and suitcase; 3) SAC successfully detects and removes a patch, but the patch covers foreground objects and thus the object detector fails to detect the objects on the masked image (*e.g.*, Fig. 15 row 3). We can potentially mitigate the first issue by improving the patch segmenter, such as using more advanced segmentation networks and doing longer self adversarial training. For the second issue, we can avoid it by fine-tuning the base object detector on images with randomly-placed black blocks. For the third issue, if the attacker is allowed to arbitrarily

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648
649
650
651
652
653
654
655
656
657
658702
703
704
705
706
707
708
709
710
711
712659
660
661
662
663
664
665
666
667
668
669
670
671
672
673713
714
715
716
717
718
719
720674
675
676
677
678
679
680
681
682
683
684
685
686721
722
723
724
725
726
727
728
729
730
731
732
733
734687 (a) Adversarial images. (b) Outputs of patch segmentation \hat{M}_{PS} . (c) Outputs of shape completion \hat{M}_{SC} . (d) Ground-truth patch masks M .
688689 Figure 6. Visualization of shape completion outputs. Given the output of the patch segmenter, the proposed shape completion algorithm
690 generates a “completed patch mask” to cover the entire adversarial patches.
691
692
693
694
695
696
697
698
699
700
701741
742
743
744

745

746

747

748

749

750

751

752

753

754

755

Figure 7. Examples on the COCO dataset. The adversarial patches are 100×100 squares generated by PGD adaptive attacks.

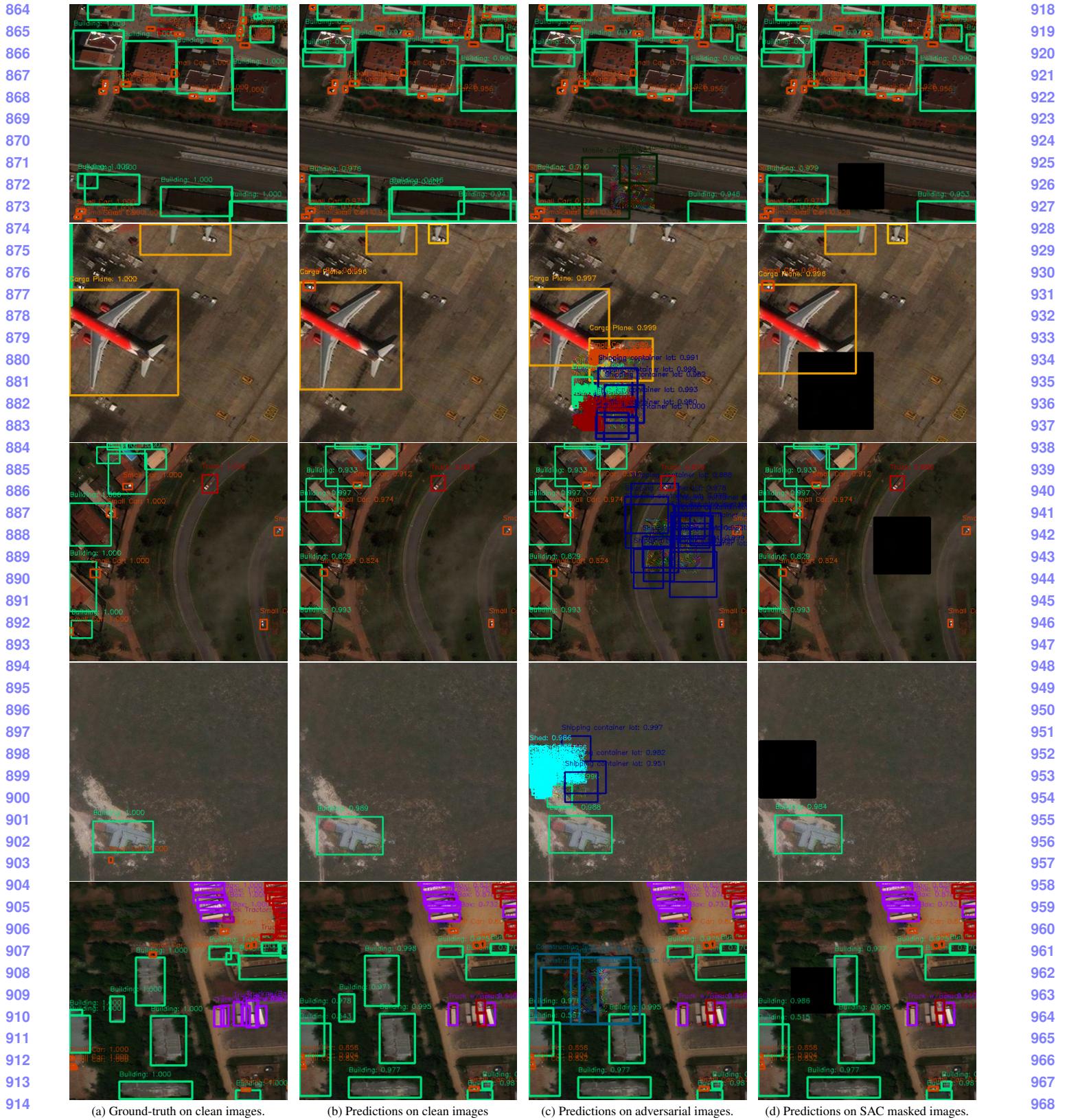


Figure 8. Examples on the xView dataset. The adversarial patches are 100×100 squares generated by PGD adaptive attacks. Adversarial patches create spurious detections, and make the detector ignore the ground-truth objects. SAC can detect and remove the patches even under strong adaptive attacks, and therefore restore model predictions.

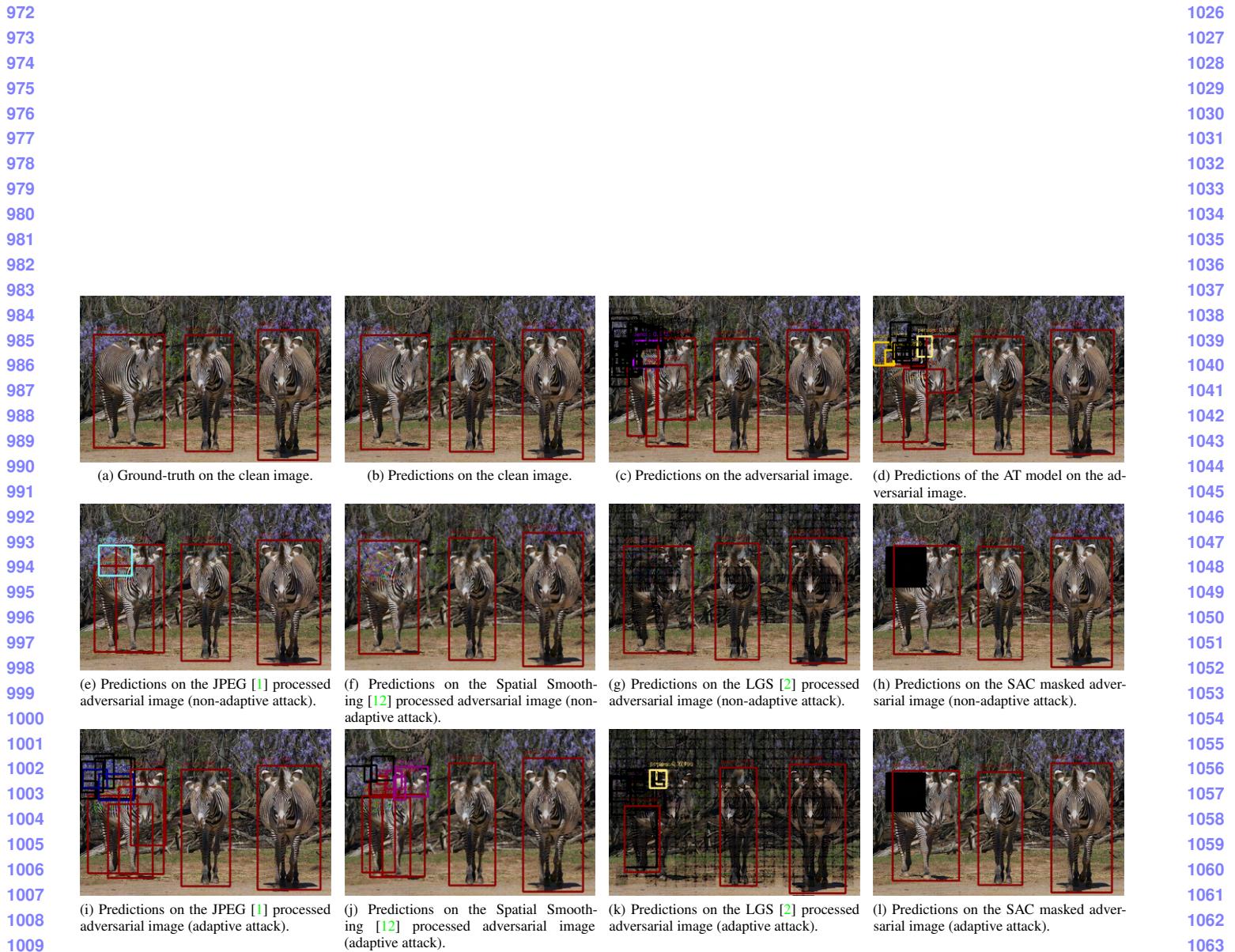


Figure 9. Detection results of different defense methods on the COCO dataset. The adversarial patches are 100×100 squares and placed at the same location. JPEG [1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC can defend both non-adaptive and adaptive attacks and maintains high image quality.

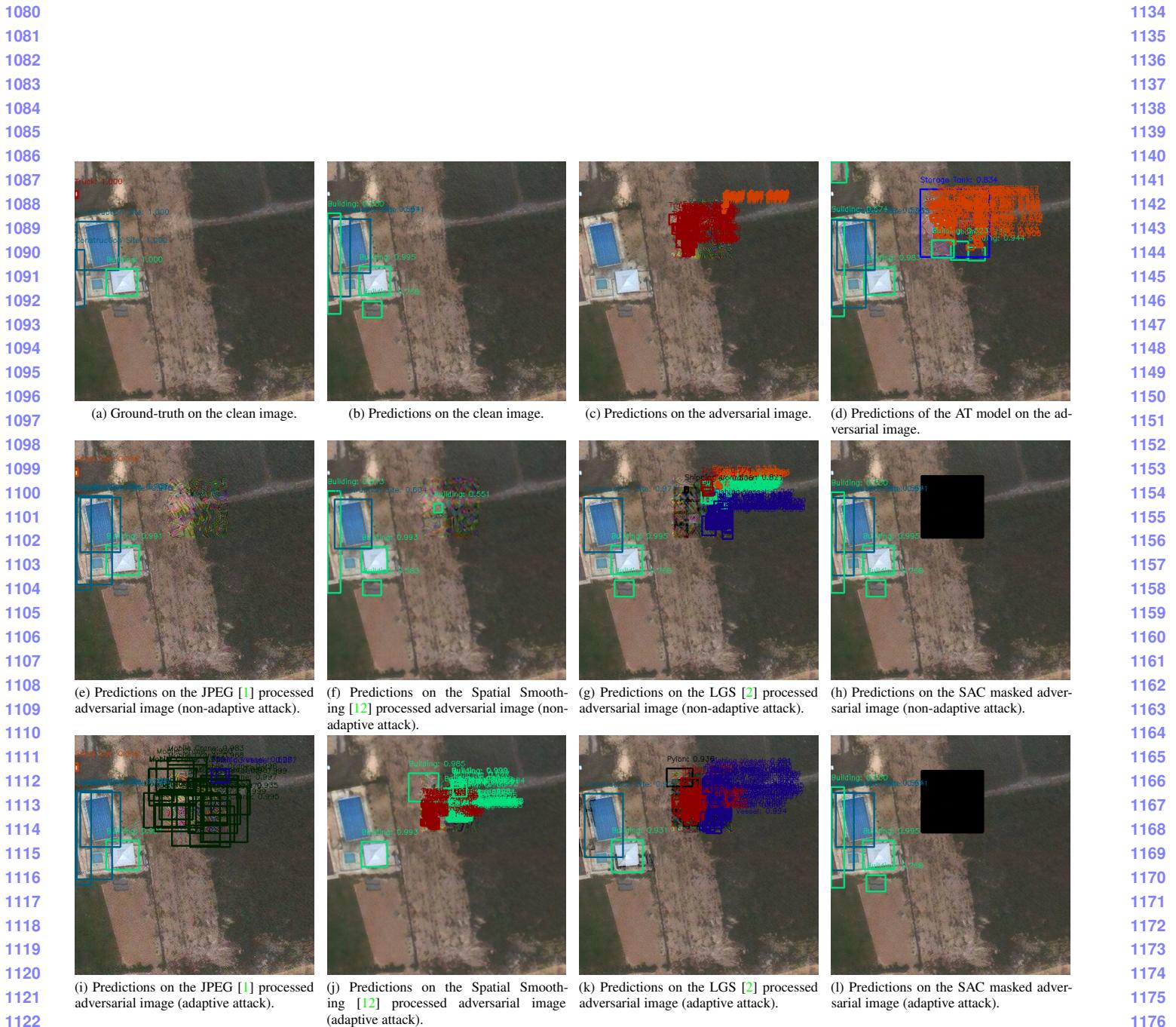
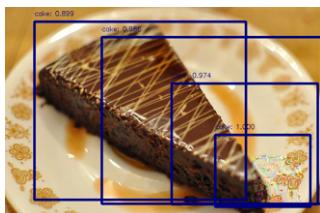


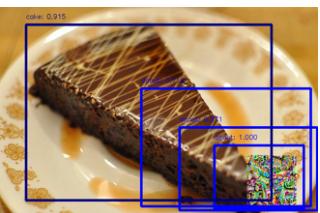
Figure 10. Detection results of different defense methods on the xView dataset. The adversarial patches are 100×100 squares and placed at the same location. JPEG [1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC can defend both non-adaptive and adaptive attacks and maintains high image quality.

1188
1189
1190
1191
1192
1193
1194
1195
1196

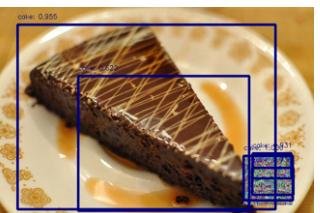
(a) Ground-truth on the clean image.



(b) Predictions on the PGD adversarial image.



(c) Predictions on the MIM adversarial image.



(d) Prediction on the DPatch adversarial image (undefended).

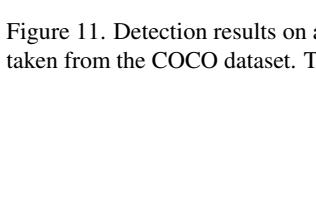
1197
1198

(e) Predictions on the clean image.

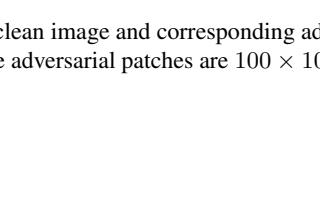
(f) Predictions on the SAC masked PGD adversarial image.

(g) Predictions on the SAC masked MIM adversarial image.

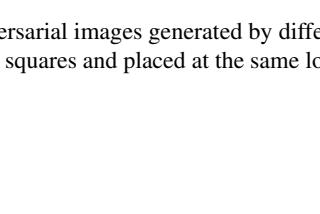
(h) Predictions on the SAC masked DPatch adversarial image.

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

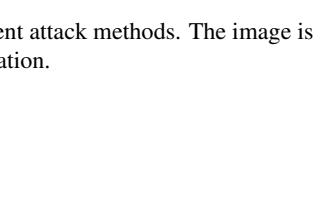
(e) Predictions on the clean image.



(f) Predictions on the SAC masked PGD adversarial image.



(g) Predictions on the SAC masked MIM adversarial image.



(h) Predictions on the SAC masked DPatch adversarial image.

Figure 11. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is taken from the COCO dataset. The adversarial patches are 100×100 squares and placed at the same location.1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

(a) Ground-truth on the clean image.

(b) Predictions on the PGD adversarial image.

(c) Predictions on the MIM adversarial image.

(d) Prediction on the DPatch adversarial image (undefended).

(e) Predictions on the clean image.

(f) Predictions on the SAC masked PGD adversarial image.

(g) Predictions on the SAC masked MIM adversarial image.

(h) Predictions on the SAC masked DPatch adversarial image.

Figure 12. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is taken from the xView dataset. The adversarial patches are 100×100 squares and placed at the same location.1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296

1350

1297

1351

1298

1352

1299

1353

1300

1354

1301

1355

1302

1356

1303

1357

1304

1358

1305

1359

1306

1360

1307

1361

1308

1362

1309

1363

1310

1364

1311

1365

1312

1366

1313

1367

1314

1368

1315

1369

1316

1370

1317

1371

1318

1372

1319

1373

1320

1374

1321

1375

(a) Ground-truth on the clean image.

(b) Predictions on the adversarial image with a circle patch.

(c) Predictions on the adversarial image with a rectangle patch.

(d) Predictions on the adversarial image with an ellipse patch.

(e) Predictions on the clean image.

(f) Predictions on the SAC masked adversarial image with a circle patch.

(g) Predictions on the SAC masked adversarial image with a rectangle patch.

(h) Predictions on the SAC masked adversarial image with an ellipse patch.

Figure 13. Detection results on adversarial images with different patch shapes. The image is taken from the COCO dataset. The adversarial patches have 100×100 pixels and placed at the same location.

1317

1369

1318

1370

1319

1371

1320

1372

1321

1373

1322

1374

1323

1375

1324

1376

1325

1377

1326

1378

1327

1379

1328

1380

1329

1381

1330

1382

1331

1383

1332

1384

1333

1385

1334

1386

1335

1387

1336

1388

1337

1389

1338

1390

1339

1391

1340

1392

1341

1393

1342

1394

1343

1395

1344

1396

1345

1397

1346

1398

1347

1399

1348

1400

1349

1401

1350

1402

1351

1403

(a) Ground-truth.



(b) Predictions on the adversarial image with a circle patch.

(c) Predictions on the adversarial image with a rectangle patch.

(d) Predictions on the adversarial image with an ellipse patch.

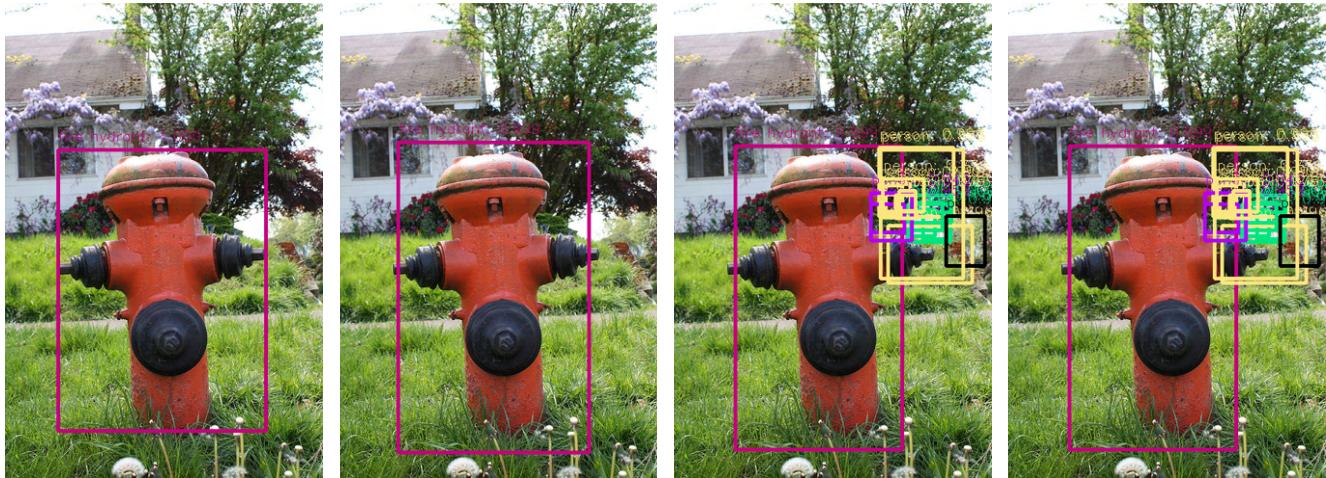
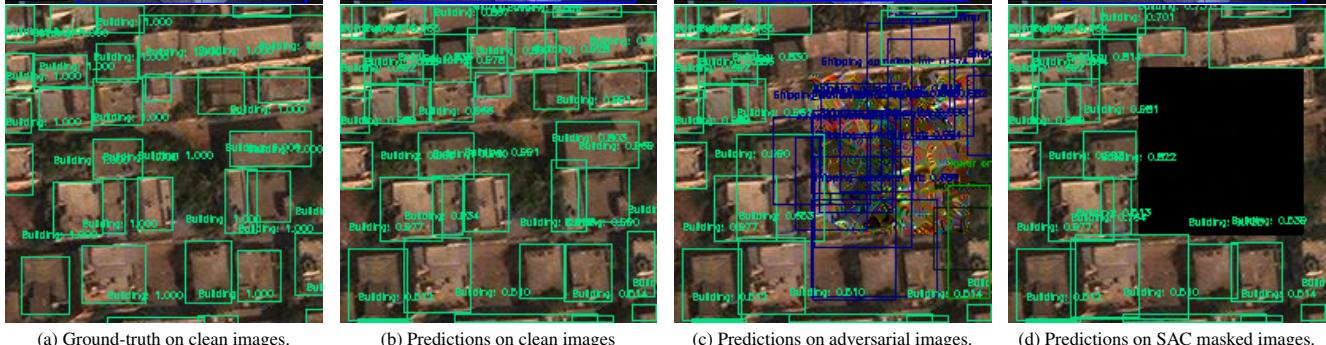
(e) Predictions on the clean image.

(f) Predictions on the SAC masked adversarial image with a circle patch.

(g) Predictions on the SAC masked adversarial image with a rectangle patch.

(h) Predictions on the SAC masked adversarial image with an ellipse patch.

Figure 14. Detection results on adversarial images with different patch shapes. The image is taken from the xView dataset. The adversarial patches have 100×100 pixels and placed at the same location.

1404
1405
1406
1407
1408
1409
1410
1411
14121413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
14271428
1429
1430
1431
1432
1433
14341435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445

(a) Ground-truth on clean images.

(b) Predictions on clean images

(c) Predictions on adversarial images.

(d) Predictions on SAC masked images.

1446
1447
1448
1449

Figure 15. Examples of failure cases. Row 1: SAC fails to detect and remove the adversarial patch, which happens very rarely. Row 2: the black block from masking out the patch creates a false detection of “TV”. Row 3: the black block from masking out the patch cover foreground objects. See the discussion in Section B.5.5.

1450
1451
1452
1453
1454
1455
1456
14571458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

1512

References

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

- [1] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy. A study of the effect of JPG compression on adversarial images. *arXiv preprint arXiv:1608.00853*, 2016. 1, 5, 10, 11
- [2] Muzammal Naseer, Salman Khan, and Fatih Porikli. Local gradients smoothing: Defense against localized adversarial attacks. In *2019 IEEE Winter Conference on Applications of Computer Vision (WACV)*, pages 1300–1307. IEEE, 2019. 1, 5, 10, 11
- [3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 234–241. Springer, 2015. 1
- [4] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. *Cited on*, 14(8), 2012. 1
- [5] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In *Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1*, NIPS’15, page 91–99, Cambridge, MA, USA, 2015. MIT Press. 2
- [6] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. SSD: Single shot multibox detector. In *European Conference on Computer Vision*, pages 21–37. Springer, 2016. 2
- [7] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In *Proceedings of the 18th ACM International Conference on Multimedia*, MM ’10, page 1485–1488, New York, NY, USA, 2010. Association for Computing Machinery. 2
- [8] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017. 2, 5, 6
- [9] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li, and Yiran Chen. DPatch: An adversarial patch attack on object detectors. *arXiv preprint arXiv:1806.02299*, 2018. 2, 6
- [10] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial attacks with momentum. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 9185–9193, 2018. 2, 6

- [11] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013. 3

- [12] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural networks. *arXiv preprint arXiv:1704.01155*, 2017. 5, 10, 11