
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Supplementary Material

A. Baselines Details
For JPEG compression [1], we set the quality parameter

to 50. For spatial smoothing, we use window size 3. For
LGS [2], we set the block size to 30, overlap to 5, threshold
to 0.1, and smoothing factor to 2.3. For AT, we use PGD
attacks with 30 iterations and step size 0.067, which takes
around twelve hours per epoch on the xView training set and
thirty-two hours on COCO using ten GPUs. We use SGD
optimizers with an initial learning rate of 0.01, momentum
0.9, weight decay 5×10−4, and batch size 10. We train each
model with ten epochs. There is a possibility that the AT
models would perform better if we train them longer or tune
the training hyper-parameters. However, we were unable to
do so due to the extremely expensive computation needed.

B. SAC Details
B.1. Training the Patch Segmenter

COCO and xView datasets We use U-Net [3] with 16
initial filters as the patch segmenter on the COCO and xView
datasets. To train the patch segmenters, for each dataset
we generate 55k fixed adversarial images from the training
set with a patch size 100 × 100 by attacking base object
detectors, among which 50k are used for training and 5k
for validation. We randomly replace each adversarial image
with its clean counterpart with a probability of 30% during
training to ensure good performance on clean data. All
images are cropped to squares and resized to 500 × 500
during training. We use RMSprop [4] optimizer with an
initial learning rate of 10−4, momentum 0.9, weight decay
10−8, and batch size 16. We train patch segmenters for five
epochs and evaluate them on the validation set five times in
each epoch. We reduce the learning rate by a factor of ten
if there is no improvement after two evaluations. For self
adversarial training, we train each model for one epoch with
λ = 0.3 using PGD attacks with 200 iterations and step size
α = 0.01, which takes around eight hours on COCO and
four hours on xView using ten GPUs.

APRICOT dataset Detecting adversarial patches in the
physical world can be more challenging, as the shape and
appearance of patches can vary a lot under different viewing
angles and lighting conditions. For the APRICOT dataset,
We use U-Net [3] with 64 initial filters as the patch seg-
menter. We downscale each image by a factor of two during
training and evaluation to save memory as each image is
approximately 12 megapixels (e.g., 4000 × 3000 pixels).
We use 85% of the APRICOT test set (742 images) as the
training set, and the rest (131 images) as the validation set.
During training, we randomly crop 500×500 image patches
from the downscale images, with a probability of 60% that

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

0 50 100 150

0

25

50

75

100

125

150

175

(a) 50× 50

0 50 100 150

0

25

50

75

100

125

150

175

(b) 75× 75

0 50 100 150

0

25

50

75

100

125

150

175

(c) 100× 100

0 50 100 150

0

25

50

75

100

125

150

175

(d) 125× 125

Figure 1. Different shapes used for evaluating SAC. From top to
bottom: square, circle, rectangle, diamond, triangle, and ellipse.
Shapes in each column have approximately the same n× n pixels,
where n ∈ {50, 75, 100, 125}.

an image patch contain an adversarial patch and 40% that it
contain no patch. We use RMSprop [4] optimizer with an
initial learning rate of 10−3, momentum 0.9, weight decay
10−8, and batch size 24. We train patch segmenters for 100
epochs, and reduce the learning rate by a factor of ten if the
dice score on the validation set has no improvement after 10
epochs. After training, we pick the checkpoint that has the
highest dice score on the validation set as our final model.
The training takes around four hours on six gpus.

B.2. Different Patch Shapes for Evaluating SAC

In the main paper, we demonstrate generalization to un-
seen patch shapes that were not considered in training the
patch segmenter and in shape completion, obtaining sur-
prisingly good robust performance. The shapes used for
evaluating SAC are shown in Fig. 1.

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B.3. Evaluate SAC with SSD

We use Faster R-CNN [5] as our base object detector in
the main paper. However, SAC is compatible with any object
detector as it is a pre-processing defense. In this section, we
show the performance of SAC using SSD [6] as the base
object detector on the COCO dataset. The pre-trained SSD
model is provided in torchvision [7]. We do not re-train
the patch segmenter for SSD as the self adversarial training
on the patch segmenter is object-detector agnostic. Results
shown in Table 1 demonstrate that SAC can also provide
strong robustness for SSD across different attack methods
and patch sizes.

Table 1. mAP (%) under different attack methods using SSD as the
base object detector. The mAP on clean images is 44.5% for the
undefended model and 44.4% for the SAC defended model.

Attack Method 75×75 100×100 125×125

PGD [8] Undefended 18.3±0.4 11.4±0.2 7.0±0.1
SAC (Ours) 39.1±0.3 38.8±0.2 34.2±0.1

DPatch [9] Undefended 21.5±0.8 16.9±0.2 12.5±0.6
SAC (Ours) 39.9±0.2 39.1±0.1 35.4±0.3

MIM [10] Undefended 17.6±0.5 10.4±0.2 6.0±0.2
SAC (Ours) 37.9±0.2 38.5±0.1 35.0±0.3

B.4. Shape Completion Details

B.4.1 Dynamic Programming for Shape Completion

Recall that our shape-completed mask is defined as:

M̂SC (i,j) :=


1 if ∃ i′, j′ : M

s,(i′,j′)
(i,j) = 1 and

dH(M̂PS ,M
s,(i′,j′))

s2 ≤ γ
0 otherwise.

(1)

Here, we give a dynamic-programming based O(H×W)
time algorithm for computing this mask.

We first need to define the following O(H ×W) time
subroutine: for an H ×W binary matrix M , let Cuml.(M)
be defined as follows:

Cuml.(M)(i,j) :=
i∑

i′=1

j∑
j′=1

M(i′,j′) (2)

The entire matrix Cuml.(M) can be computed inO(H×W)
as follows. We first define Cuml.x(M) as:

Cuml.x(M)(i,j) :=
i∑

i′=1

M(i′,j) (3)

Note that Cuml.x(M)(1,j) =M(1,j) and that, for i > 1,

Cuml.x(M)(i,j) :=M(i,j) + Cuml.x(M)(i−1,j) (4)

We can then construct Cuml.x(M) row-by-row along the
index i, with each cell taking constant time to fill: therefore
Cuml.x(M) is constructed in O(H ×W) time. Cuml.(M)
can then be constructed through two applications of this
algorithm as:

Cuml.(M) = (Cuml.x((Cuml.x(M))T))T (5)

We now apply this algorithm to M̂PS :

CumlM̂PS := Cuml.(M̂PS). (6)

Note that, for each i, j:

dH(M̂PS ,M
s,(i,j))

=
∑

i′∈[i,i+s)
j′∈[j,j+s)

(1− M̂PS,(i′,j′)) +
∑

i′ 6∈[i,i+s)∨
j′ 6∈[j,j+s)

M̂PS,(i′,j′)

= s2 −
∑

i′∈[i,i+s)
j′∈[j,j+s)

M̂PS,(i′,j′) +
∑

i′ 6∈[i,i+s)∨
j′ 6∈[j,j+s)

M̂PS,(i′,j′)

= s2 +
∑
(i′,j′)

M̂PS,(i′,j′) − 2
∑

i′∈[i,i+s)
j′∈[j,j+s)

M̂PS,(i′,j′)

= s2 + CumlM̂PS(H,W) − 2

(∑
i′∈[1,i+s)
j′∈[1,j+s)

M̂PS,(i′,j′)−

∑
i′∈[1,i)

j′∈[1,j+s)

M̂PS,(i′,j′) −
∑

i′∈[1,i+s)
j′∈[1,j)

M̂PS,(i′,j′) +
∑

i′∈[1,i)
j′∈[1,j)

M̂PS,(i′,j′)

)

= s2 + CumlM̂PS,(H,W) − 2

(
CumlM̂PS,(i+s−1,j+s−1)

− CumlM̂PS,(i−1,j+s−1) − CumlM̂PS,(i+s−1,j−1)

+ CumlM̂PS,(i−1,j−1)

)
(7)

(We are disregarding edge cases where i + s > H or j +
s > W : these can be easily reasoned about.) Using a
pre-computed CumlM̂PS , we can then compute each of
these Hamming distances in constant time. We can then, in
O(H ×W) time, compute the matrix M̂γ :

M̂γ,(i,j) := 1 dH (M̂PS,M
s,(i,j))

s2
≤γ

(8)

where 1 denotes an indicator function. We also pre-compute
the cumulative sums of this matrix:

CumlM̂γ := Cuml.(M̂γ) (9)

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Now, recall the condition of Eq. (1):

∃ i′, j′ : M
s,(i′,j′)
(i,j) = 1 and

dH(M̂PS ,M
s,(i′,j′))

s2
≤ γ

⇐⇒ ∃ i′, j′ : M
s,(i′,j′)
(i,j) = 1 and M̂γ,(i′,j′) = 1

⇐⇒
∑

i′∈(i−s,i]
j′∈(j−s,j]

M̂γ,(i′,j′) ≥ 1

⇐⇒

(∑
i′∈[1,i]
j′∈[1,j]

M̂γ,(i′,j′) −
∑

i′∈[1,i−s]
j′∈[1,j]

M̂γ,(i′,j′)

−
∑
i′∈[1,i]

j′∈[1,j−s]

M̂γ,(i′,j′) +
∑

i′∈[1,i−s]
j′∈[1,j−s]

M̂γ,(i′,j′)

)
≥ 1

⇐⇒
(
CumlM̂γ,(i,j) − CumlM̂γ,(i−s,j)

− CumlM̂γ,(i,j−s) + CumlM̂γ,(i−s,j−s)
)
≥ 1

(10)

Again, this can be computed in constant time for each in-
dex. Let Ĉγ,(i,j) := CumlM̂γ,(i,j) − CumlM̂γ,(i−s,j) −
CumlM̂γ,(i,j−s)+CumlM̂γ,(i−s,j−s), then Eq. (1) becomes
simply:

M̂SC (i,j) := 1Ĉγ,(i,j)≥1 (11)

This gives us an overall runtime of O(H ×W) as desired.
Note that in our PyTorch implementation, we are able to use
tensor operations such that no explicit iteration over indices
is necessary at any point in the algorithm.

B.4.2 Adjusting γ

In practice, the method described above can be highly sen-
sitive to the hyperparameter γ. If γ is set too low, then no
candidate mask Ms,(i′,j′) will be sufficiently close to M̂PS ,
so the detector will return nothing. However, if γ is set too
high, then the shape completion will be too conservative,
masking a large area of possible candidate patches. (Note
that γ ≥ 1 is not usable, because it would cover an image
entirely with a mask even when M̂PS = 0.) To deal with this
issue, we initially use low values of γ, and then gradually
increase γ if no mask is initially returned – stopping when
either some mask is returned or a maximum value is reached,
at which point we assume that there is no ground-truth ad-
versarial patch. Specifically, for iteration t = 1, ..., T , we
set

γt := 1− αβ(t−1),

where T ∈ N, and α, β < 1. We then return the first nonzero
M̂SC(S, γt), or an empty mask if this does not occur. We
set α = 0.9, β = 0.7, T = 15. The values of α, β and T are
tuned using grid search on a validation set with 200 images
from the xView dataset (See Figure 2).

Figure 2. Validation set performance on xView under adaptive
attack, as a function of defense hyperparameters α, β, T used for
searching over γ. Within each column, more green shading indi-
cates higher mAP.

B.4.3 Adaptive attacks on Shape Completion

To attack the patch segmenter, we use a straight-through
estimator (STE) [11] at the thresholding step: M̂PS =
PSθ(x) > 0.5. To attack the shape completion algorithm,
we have tried the following attacks:

BPDA Attack Note that the algorithm described in Sec-
tion B.4.1 involves two non-differentiable thresholding steps
(Eq. (8) and Eq. (11)). In order to implement an adaptive
attack, at these steps, we use BPDA, using a STE for the
gradient at each thresholding step. When aggregating masks

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

which assume patches of different sizes (Equation 9 in the
main text) we also use a straight-through estimator on a
thresholded sum of masks. This is the strongest adaptive
attack for SAC that we found and we use this attack in the
main paper.

γ-Search STE Attack There is an additional non-
differentiable step in the defense, however: the search over
values of γ described in Section B.4.2. In order to deal with
this, we attempted to use BPDA as well, using the following
recursive formulation:

M̂SC(S)α,β,0 := 0

M̂SC(S)α,β,T := M̂SC(S, 1− α)
+ 1ΣM̂SC (S,1−α)

C <1
M̂SC(S)α∗β,β,T−1 (for T ≥ 1)

(12)

Where C is the area of the smallest considered patch size in
S (i.e., the minimum nonzero shape completion output).

We can then use a STE for the indicator function. How-
ever, this technique turns out to yield worse performance
in practice than simply treating the search over γ as non-
differentiable (See Fig. 3). Therefore, in our main results,
we treat this search over γ as non-differentiable, rather than
using an STE.

Log-Sum-Exp Transfer Attack We were also initially
concerned that the simple straight-through estimation ap-
proach for the algorithm described in Section B.4.1 might
fail, specifically at the point of Eq. (11), where the threshold
takes the form (see Eq. (10)):∑

i′∈(i−s,i]
j′∈(j−s,j]

M̂γ,(i′,j′) ≥ 1 (13)

where M̂γ,(i′,j′) is a 0/1 indicator of whether a patch should
be added to the final output mask with upper-left corner
(i′, j′). We were concerned that a straight-through estimator
would propagate gradients to the sum directly, affecting every
potential patch which could cover a location (i, j), rather
than concentrating the gradient only on those patches that
actually contribute to the pixel (i, j) being masked.

To mitigate this, we first considered the equivalent thresh-
old condition:

max
i′∈(i−s,i]
j′∈(j−s,j]

M̂γ,(i′,j′) ≥ 1 (14)

While logically equivalent, the gradient propagated by the
STE to the LHS would now only propagate on to the values
M̂γ,(i′,j′) which are equal to 1. However, unfortunately, this
formulation is not compatible with the dynamic program-
ming algorithm described in Section B.4.1: due to computa-
tional limitations, we do not want to compute the maximum
over every pair (i′, j′), for each pair (i, j).

Figure 3. Difference in mAP under BPDA attack using STE gra-
dients for the search over γ (as in Eq. (12)) versus simply treating
the search as non-differentiable, on 200-image xView validation
set. Positive numbers (green) indicate that the non-differentiable
treatment yielded a more successful attack, while negative numbers
(red) indicate that the STE treatment was more successful. We
see that in most hyperparameter settings, the STE treatment of the
search over γ made the attack less successful, and in no setting did
it make the attack substantially more successful.

To solve this problem, we instead used the following
proxy function when generating attack gradients (including
during the forward pass):

log

(∑
i′∈(i−s,i]
j′∈(j−s,j]

eC·M̂γ,(i′,j′)

)
/C ≥ 1 (15)

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

where C is a large constant (we use C = 10 log(100)). This
is the “LogSumExp” softmax function: note that the LHS is
approximately 1 if any M̂γ,(i′,j′) is one and approximately
zero otherwise. Also note that the derivative of the LHS
with respect to each M̂γ,(i′,j′) is similarly approximately 1
if M̂γ,(i′,j′) is one and zero otherwise. Crucially, we can
compute this in the above DP framework, simply by replac-
ing M̂γ,(i′,j′) with its exponent (and taking the log before
thresholding).

However, in practice, the naive BPDA attack outperforms
this adaptive attack (Fig. 4). This is likely because the condi-
tion in Eq. (15) is an inexact approximation, so the function
being attacked differs from the true objective. (In both at-
tacks, we treat the search over γ as nondifferentiable, as
described above.)

B.4.4 Patch Visualization

We find that adaptive attacks on models with SC would force
the attacker to generate patches that have more structured
noises trying to fool SC (see Fig. 5).

B.4.5 Visualization of Shape Completion Outputs

We provide several examples of shape completion outputs
in Fig. 6. The outputs of the patch segmenter can be dis-
turbed by the attacker such that some parts of the adversarial
patches are not detected, especially under adaptive attacks.
Given the output mask of the patch segmenter, the proposed
shape completion algorithm generates a “completed patch
mask” to cover the entire adversarial patches.

B.5. Visualization of Detection Results

B.5.1 SAC under Adaptive Attacks

We provide several examples of SAC under adaptive attacks
in Fig. 7 and Fig. 8. Adversarial patches create spurious
detections, and make the detector ignore the ground-truth
objects. SAC can detect and remove the adversarial patches
even under strong adaptive attacks, and therefore restore
model predictions.

B.5.2 SAC v.s. Baselines

In this paper, we compare SAC with JPEG [1], Spatial
Smoothing [12], LGS [2], and vanilla adversarial training
(AT) [8]. Visual comparisons are shown in Fig. 9 and Fig. 10.
JPEG, Spatial Smoothing, LGS are pre-processing defenses
that aim to remove the high-frequency information of ad-
versarial patches. They have reasonable performance under
non-adaptive attacks, but can not defend adaptive attacks
where the adversary also attacks the pre-process functions.
In addition, they degrade image quality, especially LGS,
which degrades their performance on clean images. SAC

Figure 4. Difference in mAP using Log-Sum-Exp approximation
for Eq. (11) as described in Eq. (15) versus the naive BPDA attack
we ultimately used, on 200-image xView validation set. Positive
numbers (green) indicate that the naive BPDA attack yielded a
more successful attack, while negative numbers (red) indicate that
the Log-Sum-Exp treatment was more successful. We see that in
most hyperparameter settings, the Log-Sum-Exp technique made
the attack less successful, and in no setting did it make the attack
substantially more successful.

can defend both non-adaptive and adaptive attacks. In addi-
tion, SAC does not degrade image quality, and therefore can
maintain high performance on clean images.

5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Patch for SAC without SC. (b) Patch for SAC with SC.

Figure 5. 100× 100 adversarial patches generated by adaptive at-
tacks on xView dataset. Patches for SAC without shape completion
(SC) have widespread noises in the square bounded area, while
patches for SAC with SC have structured noises.

B.5.3 SAC under Different Attack Methods

We visualize the detection results of SAC under different
attacks in Fig. 11 and Fig. 12, including PGD [8], MIM [10]
and DPatch [9]. SAC can effectively detect and remove
the adversarial patches under different attacks and restore
the model predictions. We also notice that the adversarial
patches generated by different methods has different styles.
PGD generated adversarial patches are less visible, even
though it has the same ε = 1 attack budget.

B.5.4 SAC under Different Patch Shapes

We visualize the detection results of SAC under PGD attacks
with unseen patch shapes in Fig. 13 and Fig. 14, including
circle, rectangle and ellipse. SAC can effectively detect
and remove the adversarial patches of different shapes and
restore the model predictions, even though those shapes are
used in training the patch segmenter and mismatch the square
shape prior in shape completion. However, we do notice that
masked region can be larger than the original patches as SAC
tries to cover the patch with square shapes.

B.5.5 Failure Cases

There are several failure modes in SAC: 1) SAC completely
fails to detect a patch (e.g., Fig. 15 row 1), which happens
very rarely; 2) SAC successfully detects and removes a patch,
but the black blocks from patch removing causes misdetec-
tion (e.g., Fig. 15 row 2), which happens more often on the
COCO dataset since black blocks resemble some object cate-
gories in the dataset such as TV, traffic light, and suitcase; 3)
SAC successfully detects and removes a patch, but the patch
covers foreground objects and thus the object detector fails
to detect the objects on the masked image (e.g., Fig. 15 row
3). We can potentially mitigate the first issue by improving
the patch segmenter, such as using more advanced segmen-
tation networks and doing longer self adversarial training.
For the second issue, we can avoid it by fine-tuning the base
object detetor on images with randomly-placed black blocks.
For the third issue, if the attacker is allowed to arbitrarily

distort the pixels and destroy all the information within the
patch such as in physical patch attacks, there is no chance
that we can detect the objects hiding behind the adversarial
patches. However, in the case where the patches are less
visible, some information may be preserved in the patched
area. We can potentially impaint or reconstruct the content
within the patches to help detection.

6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Adversarial images. (b) Outputs of patch segmentation M̂PS . (c) Outputs of shape completion M̂SC . (d) Ground-truth patch masksM .

Figure 6. Visualization of shape completion outputs. Given the output of the patch segmenter, the proposed shape completion algorithm
generates a “completed patch mask” to cover the entire adversarial patches.

7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images.

Figure 7. Examples on the COCO dataset. The adversarial patches are 100× 100 squares generated by PGD adaptive attacks.
8

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images.

Figure 8. Examples on the xView dataset. The adversarial patches are 100× 100 squares generated by PGD adaptive attacks. Adversarial
patches create spurious detections, and make the detector ignore the ground-truth objects. SAC can detect and remove the patches even
under strong adaptive attacks, and therefore restore model predictions.

9

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on the clean image. (b) Predictions on the clean image. (c) Predictions on the adversarial image. (d) Predictions of the AT model on the ad-
versarial image.

(e) Predictions on the JPEG [1] processed
adversarial image (non-adaptive attack).

(f) Predictions on the Spatial Smooth-
ing [12] processed adversarial image (non-
adaptive attack).

(g) Predictions on the LGS [2] processed
adversarial image (non-adaptive attack).

(h) Predictions on the SAC masked adver-
sarial image (non-adaptive attack).

(i) Predictions on the JPEG [1] processed
adversarial image (adaptive attack).

(j) Predictions on the Spatial Smooth-
ing [12] processed adversarial image
(adaptive attack).

(k) Predictions on the LGS [2] processed
adversarial image (adaptive attack).

(l) Predictions on the SAC masked adver-
sarial image (adaptive attack).

Figure 9. Detection results of different defense methods on the COCO dataset. The adversarial patches are 100× 100 squares and placed at
the same location. JPEG [1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend
adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC
can defend both non-adaptive and adaptive attacks and maintains high image quality.

10

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on the clean image. (b) Predictions on the clean image. (c) Predictions on the adversarial image. (d) Predictions of the AT model on the ad-
versarial image.

(e) Predictions on the JPEG [1] processed
adversarial image (non-adaptive attack).

(f) Predictions on the Spatial Smooth-
ing [12] processed adversarial image (non-
adaptive attack).

(g) Predictions on the LGS [2] processed
adversarial image (non-adaptive attack).

(h) Predictions on the SAC masked adver-
sarial image (non-adaptive attack).

(i) Predictions on the JPEG [1] processed
adversarial image (adaptive attack).

(j) Predictions on the Spatial Smooth-
ing [12] processed adversarial image
(adaptive attack).

(k) Predictions on the LGS [2] processed
adversarial image (adaptive attack).

(l) Predictions on the SAC masked adver-
sarial image (adaptive attack).

Figure 10. Detection results of different defense methods on the xView dataset. The adversarial patches are 100× 100 squares and placed at
the same location. JPEG [1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend
adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC
can defend both non-adaptive and adaptive attacks and maintains high image quality.

11

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on the clean image. (b) Predictions on the PGD adversarial im-
age.

(c) Predictions on the MIM adversarial im-
age.

(d) Prediction on the DPatch adversarial
image (undefended).

(e) Predictions on the clean image. (f) Predictions on the SAC masked PGD
adversarial image.

(g) Predictions on the SAC masked MIM
adversarial image.

(h) Predictions on the SAC masked DPatch
adversarial image.

Figure 11. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is
taken from the COCO dataset. The adversarial patches are 100× 100 squares and placed at the same location.

(a) Ground-truth on the clean image. (b) Predictions on the PGD adversarial im-
age.

(c) Predictions on the MIM adversarial im-
age.

(d) Prediction on the DPatch adversarial
image (undefended).

(e) Predictions on the clean image. (f) Predictions on the SAC masked PGD
adversarial image.

(g) Predictions on the SAC masked MIM
adversarial image.

(h) Predictions on the SAC masked DPatch
adversarial image.

Figure 12. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is
taken from the xView dataset. The adversarial patches are 100× 100 squares and placed at the same location.

12

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on the clean image. (b) Predictions on the adversarial image
with a circle patch.

(c) Predictions on the adversarial image
with a rectangle patch.

(d) Predictions on the adversarial image
with a ellipse patch.

(e) Predictions on the clean image. (f) Predictions on the SAC masked adver-
sarial image with a circle patch.

(g) Predictions on the SAC masked adver-
sarial image with a rectangle patch.

(h) Predictions on the SAC masked adver-
sarial image with an ellipse patch.

Figure 13. Detection results on adversarial images with different patch shapes. The image is taken from the COCO dataset. The adversarial
patches have 100× 100 pixels and placed at the same location.

(a) Ground-truth. (b) Predictions on the adversarial image
with a circle patch.

(c) Predictions on the adversarial image
with a rectangle patch.

(d) Predictions on the adversarial image
with a ellipse patch.

(e) Predictions on the clean image. (f) Predictions on the SAC masked adver-
sarial image with a circle patch.

(g) Predictions on the SAC masked adver-
sarial image with a rectangle patch.

(h) Predictions on the SAC masked adver-
sarial image with an ellipse patch.

Figure 14. Detection results on adversarial images with different patch shapes. The image is taken from the xView dataset. The adversarial
patches have 100× 100 pixels and placed at the same location.

13

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images.

Figure 15. Examples of failure cases. Row 1: SAC fails to detect and remove the adversarial patch, which happens very rarely. Row 2:
the black block from masking out the patch creates a false detection of “TV”. Row 3: the black block from masking out the patch cover
foreground objects. See the discussion in Section B.5.5.

14

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References
[1] Gintare Karolina Dziugaite, Zoubin Ghahramani, and

Daniel M Roy. A study of the effect of JPG
compression on adversarial images. arXiv preprint
arXiv:1608.00853, 2016. 1, 5, 10, 11

[2] Muzammal Naseer, Salman Khan, and Fatih Porikli.
Local gradients smoothing: Defense against localized
adversarial attacks. In 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages
1300–1307. IEEE, 2019. 1, 5, 10, 11

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-Net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention,
pages 234–241. Springer, 2015. 1

[4] Geoffrey Hinton, Nitish Srivastava, and Kevin Swer-
sky. Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. Cited on,
14(8), 2012. 1

[5] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks. In Proceedings
of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 1, NIPS’15, page
91–99, Cambridge, MA, USA, 2015. MIT Press. 2

[6] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Chris-
tian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexan-
der C Berg. SSD: Single shot multibox detector. In
European Conference on Computer Vision, pages 21–
37. Springer, 2016. 2

[7] Sébastien Marcel and Yann Rodriguez. Torchvision the
machine-vision package of torch. In Proceedings of
the 18th ACM International Conference on Multimedia,
MM ’10, page 1485–1488, New York, NY, USA, 2010.
Association for Computing Machinery. 2

[8] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017. 2, 5, 6

[9] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song,
Hai Li, and Yiran Chen. DPatch: An adversar-
ial patch attack on object detectors. arXiv preprint
arXiv:1806.02299, 2018. 2, 6

[10] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang
Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9185–9193, 2018. 2, 6

[11] Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432, 2013. 3

[12] Weilin Xu, David Evans, and Yanjun Qi. Feature
squeezing: Detecting adversarial examples in deep neu-
ral networks. arXiv preprint arXiv:1704.01155, 2017.
5, 10, 11

15

	. Baselines Details
	. SAC Details
	. Training the Patch Segmenter
	. Different Patch Shapes for Evaluating SAC
	. Evaluate SAC with SSD
	. Shape Completion Details
	Dynamic Programming for Shape Completion
	Adjusting
	Adaptive attacks on Shape Completion
	Patch Visualization
	Visualization of Shape Completion Outputs

	. Visualization of Detection Results
	SAC under Adaptive Attacks
	SAC v.s. Baselines
	SAC under Different Attack Methods
	SAC under Different Patch Shapes
	Failure Cases

