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Supplementary Material

A. Baselines Details
For JPEG compression [1], we set the quality parameter

to 50. For spatial smoothing, we use window size 3. For
LGS [2], we set the block size to 30, overlap to 5, threshold
to 0.1, and smoothing factor to 2.3. For AT, we use PGD
attacks with 30 iterations and step size 0.067, which takes
around twelve hours per epoch on the xView training set and
thirty-two hours on COCO using ten GPUs. We use SGD
optimizers with an initial learning rate of 0.01, momentum
0.9, weight decay 5×10−4, and batch size 10. We train each
model with ten epochs. There is a possibility that the AT
models would perform better if we train them longer or tune
the training hyper-parameters. However, we were unable to
do so due to the extremely expensive computation needed.

B. SAC Details
B.1. Training the Patch Segmenter

COCO and xView datasets We use U-Net [3] with 16
initial filters as the patch segmenter on the COCO and xView
datasets. To train the patch segmenters, for each dataset
we generate 55k fixed adversarial images from the training
set with a patch size 100 × 100 by attacking base object
detectors, among which 50k are used for training and 5k
for validation. We randomly replace each adversarial image
with its clean counterpart with a probability of 30% during
training to ensure good performance on clean data. All
images are cropped to squares and resized to 500 × 500
during training. We use RMSprop [4] optimizer with an
initial learning rate of 10−4, momentum 0.9, weight decay
10−8, and batch size 16. We train patch segmenters for five
epochs and evaluate them on the validation set five times in
each epoch. We reduce the learning rate by a factor of ten
if there is no improvement after two evaluations. For self
adversarial training, we train each model for one epoch with
λ = 0.3 using PGD attacks with 200 iterations and step size
α = 0.01, which takes around eight hours on COCO and
four hours on xView using ten GPUs.

APRICOT dataset Detecting adversarial patches in the
physical world can be more challenging, as the shape and
appearance of patches can vary a lot under different viewing
angles and lighting conditions. For the APRICOT dataset,
We use U-Net [3] with 64 initial filters as the patch seg-
menter. We downscale each image by a factor of two during
training and evaluation to save memory as each image is
approximately 12 megapixels (e.g., 4000 × 3000 pixels).
We use 85% of the APRICOT test set (742 images) as the
training set, and the rest (131 images) as the validation set.
During training, we randomly crop 500×500 image patches
from the downscale images, with a probability of 60% that
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Figure 1. Different shapes used for evaluating SAC. From top to
bottom: square, circle, rectangle, diamond, triangle, and ellipse.
Shapes in each column have approximately the same n× n pixels,
where n ∈ {50, 75, 100, 125}.

an image patch contain an adversarial patch and 40% that it
contain no patch. We use RMSprop [4] optimizer with an
initial learning rate of 10−3, momentum 0.9, weight decay
10−8, and batch size 24. We train patch segmenters for 100
epochs, and reduce the learning rate by a factor of ten if the
dice score on the validation set has no improvement after 10
epochs. After training, we pick the checkpoint that has the
highest dice score on the validation set as our final model.
The training takes around four hours on six gpus.

B.2. Different Patch Shapes for Evaluating SAC

In the main paper, we demonstrate generalization to un-
seen patch shapes that were not considered in training the
patch segmenter and in shape completion, obtaining sur-
prisingly good robust performance. The shapes used for
evaluating SAC are shown in Fig. 1.

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B.3. Evaluate SAC with SSD

We use Faster R-CNN [5] as our base object detector in
the main paper. However, SAC is compatible with any object
detector as it is a pre-processing defense. In this section, we
show the performance of SAC using SSD [6] as the base
object detector on the COCO dataset. The pre-trained SSD
model is provided in torchvision [7]. We do not re-train
the patch segmenter for SSD as the self adversarial training
on the patch segmenter is object-detector agnostic. Results
shown in Table 1 demonstrate that SAC can also provide
strong robustness for SSD across different attack methods
and patch sizes.

Table 1. mAP (%) under different attack methods using SSD as the
base object detector. The mAP on clean images is 44.5% for the
undefended model and 44.4% for the SAC defended model.

Attack Method 75×75 100×100 125×125

PGD [8] Undefended 18.3±0.4 11.4±0.2 7.0±0.1
SAC (Ours) 39.1±0.3 38.8±0.2 34.2±0.1

DPatch [9] Undefended 21.5±0.8 16.9±0.2 12.5±0.6
SAC (Ours) 39.9±0.2 39.1±0.1 35.4±0.3

MIM [10] Undefended 17.6±0.5 10.4±0.2 6.0±0.2
SAC (Ours) 37.9±0.2 38.5±0.1 35.0±0.3

B.4. Shape Completion Details

B.4.1 Dynamic Programming for Shape Completion

Recall that our shape-completed mask is defined as:

M̂SC (i,j) :=


1 if ∃ i′, j′ : M

s,(i′,j′)
(i,j) = 1 and

dH(M̂PS ,M
s,(i′,j′))

s2 ≤ γ
0 otherwise.

(1)

Here, we give a dynamic-programming based O(H×W )
time algorithm for computing this mask.

We first need to define the following O(H ×W ) time
subroutine: for an H ×W binary matrix M , let Cuml.(M)
be defined as follows:

Cuml.(M)(i,j) :=
i∑

i′=1

j∑
j′=1

M(i′,j′) (2)

The entire matrix Cuml.(M) can be computed inO(H×W )
as follows. We first define Cuml.x(M) as:

Cuml.x(M)(i,j) :=
i∑

i′=1

M(i′,j) (3)

Note that Cuml.x(M)(1,j) =M(1,j) and that, for i > 1,

Cuml.x(M)(i,j) :=M(i,j) + Cuml.x(M)(i−1,j) (4)

We can then construct Cuml.x(M) row-by-row along the
index i, with each cell taking constant time to fill: therefore
Cuml.x(M) is constructed in O(H ×W ) time. Cuml.(M)
can then be constructed through two applications of this
algorithm as:

Cuml.(M) = (Cuml.x((Cuml.x(M))T ))T (5)

We now apply this algorithm to M̂PS :

CumlM̂PS := Cuml.(M̂PS). (6)

Note that, for each i, j:

dH(M̂PS ,M
s,(i,j))

=
∑

i′∈[i,i+s)
j′∈[j,j+s)

(1− M̂PS,(i′,j′)) +
∑

i′ 6∈[i,i+s)∨
j′ 6∈[j,j+s)

M̂PS,(i′,j′)

= s2 −
∑

i′∈[i,i+s)
j′∈[j,j+s)

M̂PS,(i′,j′) +
∑

i′ 6∈[i,i+s)∨
j′ 6∈[j,j+s)

M̂PS,(i′,j′)

= s2 +
∑
(i′,j′)

M̂PS,(i′,j′) − 2
∑

i′∈[i,i+s)
j′∈[j,j+s)

M̂PS,(i′,j′)

= s2 + CumlM̂PS(H,W ) − 2

( ∑
i′∈[1,i+s)
j′∈[1,j+s)

M̂PS,(i′,j′)−

∑
i′∈[1,i)

j′∈[1,j+s)

M̂PS,(i′,j′) −
∑

i′∈[1,i+s)
j′∈[1,j)

M̂PS,(i′,j′) +
∑

i′∈[1,i)
j′∈[1,j)

M̂PS,(i′,j′)

)

= s2 + CumlM̂PS,(H,W ) − 2

(
CumlM̂PS,(i+s−1,j+s−1)

− CumlM̂PS,(i−1,j+s−1) − CumlM̂PS,(i+s−1,j−1)

+ CumlM̂PS,(i−1,j−1)

)
(7)

(We are disregarding edge cases where i + s > H or j +
s > W : these can be easily reasoned about.) Using a
pre-computed CumlM̂PS , we can then compute each of
these Hamming distances in constant time. We can then, in
O(H ×W ) time, compute the matrix M̂γ :

M̂γ,(i,j) := 1 dH (M̂PS,M
s,(i,j))

s2
≤γ

(8)

where 1 denotes an indicator function. We also pre-compute
the cumulative sums of this matrix:

CumlM̂γ := Cuml.(M̂γ) (9)

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#8898

CVPR
#8898

CVPR 2022 Submission #8898. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Now, recall the condition of Eq. (1):

∃ i′, j′ : M
s,(i′,j′)
(i,j) = 1 and

dH(M̂PS ,M
s,(i′,j′))

s2
≤ γ

⇐⇒ ∃ i′, j′ : M
s,(i′,j′)
(i,j) = 1 and M̂γ,(i′,j′) = 1

⇐⇒
∑

i′∈(i−s,i]
j′∈(j−s,j]

M̂γ,(i′,j′) ≥ 1

⇐⇒

( ∑
i′∈[1,i]
j′∈[1,j]

M̂γ,(i′,j′) −
∑

i′∈[1,i−s]
j′∈[1,j]

M̂γ,(i′,j′)

−
∑
i′∈[1,i]

j′∈[1,j−s]

M̂γ,(i′,j′) +
∑

i′∈[1,i−s]
j′∈[1,j−s]

M̂γ,(i′,j′)

)
≥ 1

⇐⇒
(
CumlM̂γ,(i,j) − CumlM̂γ,(i−s,j)

− CumlM̂γ,(i,j−s) + CumlM̂γ,(i−s,j−s)
)
≥ 1

(10)

Again, this can be computed in constant time for each in-
dex. Let Ĉγ,(i,j) := CumlM̂γ,(i,j) − CumlM̂γ,(i−s,j) −
CumlM̂γ,(i,j−s)+CumlM̂γ,(i−s,j−s), then Eq. (1) becomes
simply:

M̂SC (i,j) := 1Ĉγ,(i,j)≥1 (11)

This gives us an overall runtime of O(H ×W ) as desired.
Note that in our PyTorch implementation, we are able to use
tensor operations such that no explicit iteration over indices
is necessary at any point in the algorithm.

B.4.2 Adjusting γ

In practice, the method described above can be highly sen-
sitive to the hyperparameter γ. If γ is set too low, then no
candidate mask Ms,(i′,j′) will be sufficiently close to M̂PS ,
so the detector will return nothing. However, if γ is set too
high, then the shape completion will be too conservative,
masking a large area of possible candidate patches. (Note
that γ ≥ 1 is not usable, because it would cover an image
entirely with a mask even when M̂PS = 0.) To deal with this
issue, we initially use low values of γ, and then gradually
increase γ if no mask is initially returned – stopping when
either some mask is returned or a maximum value is reached,
at which point we assume that there is no ground-truth ad-
versarial patch. Specifically, for iteration t = 1, ..., T , we
set

γt := 1− αβ(t−1),

where T ∈ N, and α, β < 1. We then return the first nonzero
M̂SC(S, γt), or an empty mask if this does not occur. We
set α = 0.9, β = 0.7, T = 15. The values of α, β and T are
tuned using grid search on a validation set with 200 images
from the xView dataset (See Figure 2).

Figure 2. Validation set performance on xView under adaptive
attack, as a function of defense hyperparameters α, β, T used for
searching over γ. Within each column, more green shading indi-
cates higher mAP.

B.4.3 Adaptive attacks on Shape Completion

To attack the patch segmenter, we use a straight-through
estimator (STE) [11] at the thresholding step: M̂PS =
PSθ(x) > 0.5. To attack the shape completion algorithm,
we have tried the following attacks:

BPDA Attack Note that the algorithm described in Sec-
tion B.4.1 involves two non-differentiable thresholding steps
(Eq. (8) and Eq. (11)). In order to implement an adaptive
attack, at these steps, we use BPDA, using a STE for the
gradient at each thresholding step. When aggregating masks

3
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which assume patches of different sizes (Equation 9 in the
main text) we also use a straight-through estimator on a
thresholded sum of masks. This is the strongest adaptive
attack for SAC that we found and we use this attack in the
main paper.

γ-Search STE Attack There is an additional non-
differentiable step in the defense, however: the search over
values of γ described in Section B.4.2. In order to deal with
this, we attempted to use BPDA as well, using the following
recursive formulation:

M̂SC(S)α,β,0 := 0

M̂SC(S)α,β,T := M̂SC(S, 1− α)
+ 1ΣM̂SC (S,1−α)

C <1
M̂SC(S)α∗β,β,T−1 (for T ≥ 1)

(12)

Where C is the area of the smallest considered patch size in
S (i.e., the minimum nonzero shape completion output ).

We can then use a STE for the indicator function. How-
ever, this technique turns out to yield worse performance
in practice than simply treating the search over γ as non-
differentiable (See Fig. 3). Therefore, in our main results,
we treat this search over γ as non-differentiable, rather than
using an STE.

Log-Sum-Exp Transfer Attack We were also initially
concerned that the simple straight-through estimation ap-
proach for the algorithm described in Section B.4.1 might
fail, specifically at the point of Eq. (11), where the threshold
takes the form (see Eq. (10)):∑

i′∈(i−s,i]
j′∈(j−s,j]

M̂γ,(i′,j′) ≥ 1 (13)

where M̂γ,(i′,j′) is a 0/1 indicator of whether a patch should
be added to the final output mask with upper-left corner
(i′, j′). We were concerned that a straight-through estimator
would propagate gradients to the sum directly, affecting every
potential patch which could cover a location (i, j), rather
than concentrating the gradient only on those patches that
actually contribute to the pixel (i, j) being masked.

To mitigate this, we first considered the equivalent thresh-
old condition:

max
i′∈(i−s,i]
j′∈(j−s,j]

M̂γ,(i′,j′) ≥ 1 (14)

While logically equivalent, the gradient propagated by the
STE to the LHS would now only propagate on to the values
M̂γ,(i′,j′) which are equal to 1. However, unfortunately, this
formulation is not compatible with the dynamic program-
ming algorithm described in Section B.4.1: due to computa-
tional limitations, we do not want to compute the maximum
over every pair (i′, j′), for each pair (i, j).

Figure 3. Difference in mAP under BPDA attack using STE gra-
dients for the search over γ (as in Eq. (12)) versus simply treating
the search as non-differentiable, on 200-image xView validation
set. Positive numbers (green) indicate that the non-differentiable
treatment yielded a more successful attack, while negative numbers
(red) indicate that the STE treatment was more successful. We
see that in most hyperparameter settings, the STE treatment of the
search over γ made the attack less successful, and in no setting did
it make the attack substantially more successful.

To solve this problem, we instead used the following
proxy function when generating attack gradients (including
during the forward pass):

log

( ∑
i′∈(i−s,i]
j′∈(j−s,j]

eC·M̂γ,(i′,j′)

)
/C ≥ 1 (15)
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where C is a large constant (we use C = 10 log(100)). This
is the “LogSumExp” softmax function: note that the LHS is
approximately 1 if any M̂γ,(i′,j′) is one and approximately
zero otherwise. Also note that the derivative of the LHS
with respect to each M̂γ,(i′,j′) is similarly approximately 1
if M̂γ,(i′,j′) is one and zero otherwise. Crucially, we can
compute this in the above DP framework, simply by replac-
ing M̂γ,(i′,j′) with its exponent (and taking the log before
thresholding).

However, in practice, the naive BPDA attack outperforms
this adaptive attack (Fig. 4). This is likely because the condi-
tion in Eq. (15) is an inexact approximation, so the function
being attacked differs from the true objective. (In both at-
tacks, we treat the search over γ as nondifferentiable, as
described above.)

B.4.4 Patch Visualization

We find that adaptive attacks on models with SC would force
the attacker to generate patches that have more structured
noises trying to fool SC (see Fig. 5).

B.4.5 Visualization of Shape Completion Outputs

We provide several examples of shape completion outputs
in Fig. 6. The outputs of the patch segmenter can be dis-
turbed by the attacker such that some parts of the adversarial
patches are not detected, especially under adaptive attacks.
Given the output mask of the patch segmenter, the proposed
shape completion algorithm generates a “completed patch
mask” to cover the entire adversarial patches.

B.5. Visualization of Detection Results

B.5.1 SAC under Adaptive Attacks

We provide several examples of SAC under adaptive attacks
in Fig. 7 and Fig. 8. Adversarial patches create spurious
detections, and make the detector ignore the ground-truth
objects. SAC can detect and remove the adversarial patches
even under strong adaptive attacks, and therefore restore
model predictions.

B.5.2 SAC v.s. Baselines

In this paper, we compare SAC with JPEG [1], Spatial
Smoothing [12], LGS [2], and vanilla adversarial training
(AT) [8]. Visual comparisons are shown in Fig. 9 and Fig. 10.
JPEG, Spatial Smoothing, LGS are pre-processing defenses
that aim to remove the high-frequency information of ad-
versarial patches. They have reasonable performance under
non-adaptive attacks, but can not defend adaptive attacks
where the adversary also attacks the pre-process functions.
In addition, they degrade image quality, especially LGS,
which degrades their performance on clean images. SAC

Figure 4. Difference in mAP using Log-Sum-Exp approximation
for Eq. (11) as described in Eq. (15) versus the naive BPDA attack
we ultimately used, on 200-image xView validation set. Positive
numbers (green) indicate that the naive BPDA attack yielded a
more successful attack, while negative numbers (red) indicate that
the Log-Sum-Exp treatment was more successful. We see that in
most hyperparameter settings, the Log-Sum-Exp technique made
the attack less successful, and in no setting did it make the attack
substantially more successful.

can defend both non-adaptive and adaptive attacks. In addi-
tion, SAC does not degrade image quality, and therefore can
maintain high performance on clean images.
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(a) Patch for SAC without SC. (b) Patch for SAC with SC.

Figure 5. 100× 100 adversarial patches generated by adaptive at-
tacks on xView dataset. Patches for SAC without shape completion
(SC) have widespread noises in the square bounded area, while
patches for SAC with SC have structured noises.

B.5.3 SAC under Different Attack Methods

We visualize the detection results of SAC under different
attacks in Fig. 11 and Fig. 12, including PGD [8], MIM [10]
and DPatch [9]. SAC can effectively detect and remove
the adversarial patches under different attacks and restore
the model predictions. We also notice that the adversarial
patches generated by different methods has different styles.
PGD generated adversarial patches are less visible, even
though it has the same ε = 1 attack budget.

B.5.4 SAC under Different Patch Shapes

We visualize the detection results of SAC under PGD attacks
with unseen patch shapes in Fig. 13 and Fig. 14, including
circle, rectangle and ellipse. SAC can effectively detect
and remove the adversarial patches of different shapes and
restore the model predictions, even though those shapes are
used in training the patch segmenter and mismatch the square
shape prior in shape completion. However, we do notice that
masked region can be larger than the original patches as SAC
tries to cover the patch with square shapes.

B.5.5 Failure Cases

There are several failure modes in SAC: 1) SAC completely
fails to detect a patch (e.g., Fig. 15 row 1), which happens
very rarely; 2) SAC successfully detects and removes a patch,
but the black blocks from patch removing causes misdetec-
tion (e.g., Fig. 15 row 2), which happens more often on the
COCO dataset since black blocks resemble some object cate-
gories in the dataset such as TV, traffic light, and suitcase; 3)
SAC successfully detects and removes a patch, but the patch
covers foreground objects and thus the object detector fails
to detect the objects on the masked image (e.g., Fig. 15 row
3). We can potentially mitigate the first issue by improving
the patch segmenter, such as using more advanced segmen-
tation networks and doing longer self adversarial training.
For the second issue, we can avoid it by fine-tuning the base
object detetor on images with randomly-placed black blocks.
For the third issue, if the attacker is allowed to arbitrarily

distort the pixels and destroy all the information within the
patch such as in physical patch attacks, there is no chance
that we can detect the objects hiding behind the adversarial
patches. However, in the case where the patches are less
visible, some information may be preserved in the patched
area. We can potentially impaint or reconstruct the content
within the patches to help detection.
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(a) Adversarial images. (b) Outputs of patch segmentation M̂PS . (c) Outputs of shape completion M̂SC . (d) Ground-truth patch masksM .

Figure 6. Visualization of shape completion outputs. Given the output of the patch segmenter, the proposed shape completion algorithm
generates a “completed patch mask” to cover the entire adversarial patches.
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(a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images.

Figure 7. Examples on the COCO dataset. The adversarial patches are 100× 100 squares generated by PGD adaptive attacks.
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(a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images.

Figure 8. Examples on the xView dataset. The adversarial patches are 100× 100 squares generated by PGD adaptive attacks. Adversarial
patches create spurious detections, and make the detector ignore the ground-truth objects. SAC can detect and remove the patches even
under strong adaptive attacks, and therefore restore model predictions.
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(a) Ground-truth on the clean image. (b) Predictions on the clean image. (c) Predictions on the adversarial image. (d) Predictions of the AT model on the ad-
versarial image.

(e) Predictions on the JPEG [1] processed
adversarial image (non-adaptive attack).

(f) Predictions on the Spatial Smooth-
ing [12] processed adversarial image (non-
adaptive attack).

(g) Predictions on the LGS [2] processed
adversarial image (non-adaptive attack).

(h) Predictions on the SAC masked adver-
sarial image (non-adaptive attack).

(i) Predictions on the JPEG [1] processed
adversarial image (adaptive attack).

(j) Predictions on the Spatial Smooth-
ing [12] processed adversarial image
(adaptive attack).

(k) Predictions on the LGS [2] processed
adversarial image (adaptive attack).

(l) Predictions on the SAC masked adver-
sarial image (adaptive attack).

Figure 9. Detection results of different defense methods on the COCO dataset. The adversarial patches are 100× 100 squares and placed at
the same location. JPEG [1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend
adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC
can defend both non-adaptive and adaptive attacks and maintains high image quality.
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(a) Ground-truth on the clean image. (b) Predictions on the clean image. (c) Predictions on the adversarial image. (d) Predictions of the AT model on the ad-
versarial image.

(e) Predictions on the JPEG [1] processed
adversarial image (non-adaptive attack).

(f) Predictions on the Spatial Smooth-
ing [12] processed adversarial image (non-
adaptive attack).

(g) Predictions on the LGS [2] processed
adversarial image (non-adaptive attack).

(h) Predictions on the SAC masked adver-
sarial image (non-adaptive attack).

(i) Predictions on the JPEG [1] processed
adversarial image (adaptive attack).

(j) Predictions on the Spatial Smooth-
ing [12] processed adversarial image
(adaptive attack).

(k) Predictions on the LGS [2] processed
adversarial image (adaptive attack).

(l) Predictions on the SAC masked adver-
sarial image (adaptive attack).

Figure 10. Detection results of different defense methods on the xView dataset. The adversarial patches are 100× 100 squares and placed at
the same location. JPEG [1], Spatial Smoothing [12], LGS [2] have reasonable performance under non-adaptive attacks, but can not defend
adaptive attacks where the adversary also attacks the pre-processing functions. In addition, they degrade image quality, especially LGS. SAC
can defend both non-adaptive and adaptive attacks and maintains high image quality.
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(a) Ground-truth on the clean image. (b) Predictions on the PGD adversarial im-
age.

(c) Predictions on the MIM adversarial im-
age.

(d) Prediction on the DPatch adversarial
image (undefended).

(e) Predictions on the clean image. (f) Predictions on the SAC masked PGD
adversarial image.

(g) Predictions on the SAC masked MIM
adversarial image.

(h) Predictions on the SAC masked DPatch
adversarial image.

Figure 11. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is
taken from the COCO dataset. The adversarial patches are 100× 100 squares and placed at the same location.

(a) Ground-truth on the clean image. (b) Predictions on the PGD adversarial im-
age.

(c) Predictions on the MIM adversarial im-
age.

(d) Prediction on the DPatch adversarial
image (undefended).

(e) Predictions on the clean image. (f) Predictions on the SAC masked PGD
adversarial image.

(g) Predictions on the SAC masked MIM
adversarial image.

(h) Predictions on the SAC masked DPatch
adversarial image.

Figure 12. Detection results on a clean image and corresponding adversarial images generated by different attack methods. The image is
taken from the xView dataset. The adversarial patches are 100× 100 squares and placed at the same location.
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(a) Ground-truth on the clean image. (b) Predictions on the adversarial image
with a circle patch.

(c) Predictions on the adversarial image
with a rectangle patch.

(d) Predictions on the adversarial image
with a ellipse patch.

(e) Predictions on the clean image. (f) Predictions on the SAC masked adver-
sarial image with a circle patch.

(g) Predictions on the SAC masked adver-
sarial image with a rectangle patch.

(h) Predictions on the SAC masked adver-
sarial image with an ellipse patch.

Figure 13. Detection results on adversarial images with different patch shapes. The image is taken from the COCO dataset. The adversarial
patches have 100× 100 pixels and placed at the same location.

(a) Ground-truth. (b) Predictions on the adversarial image
with a circle patch.

(c) Predictions on the adversarial image
with a rectangle patch.

(d) Predictions on the adversarial image
with a ellipse patch.

(e) Predictions on the clean image. (f) Predictions on the SAC masked adver-
sarial image with a circle patch.

(g) Predictions on the SAC masked adver-
sarial image with a rectangle patch.

(h) Predictions on the SAC masked adver-
sarial image with an ellipse patch.

Figure 14. Detection results on adversarial images with different patch shapes. The image is taken from the xView dataset. The adversarial
patches have 100× 100 pixels and placed at the same location.
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(a) Ground-truth on clean images. (b) Predictions on clean images (c) Predictions on adversarial images. (d) Predictions on SAC masked images.

Figure 15. Examples of failure cases. Row 1: SAC fails to detect and remove the adversarial patch, which happens very rarely. Row 2:
the black block from masking out the patch creates a false detection of “TV”. Row 3: the black block from masking out the patch cover
foreground objects. See the discussion in Section B.5.5.
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