Supplementary Materials:
Weakly But Deeply Supervised Occlusion-Reasoned Parametric Road Layouts

Buyu Liu!

In this supplementary material, we include further details
on the following:

* The network structure, that is, the Perspective Seman-
tics (PS) , Top-view Semantics (TS) and Top-view
Parametric Prediction (TPP) modules.

* The training protocol.

* The dataset and definitions of layout parameters, as
well as the annotation process and costs.

* Pseudo-code for rendering process.
* llustration for baselines and ablation studies.
* More results and analysis.

» Limitations and potential negative social impact

1. Network Structure

Our model consists of three modules. The first Per-
spective Semantics (PS) module inputs the RGB image and
outputs the Occlusion-reasoned Semantics in Perspective
view (OSP). The second Top-view Semantics (TS) mod-
ule projects OSP into top-view and learns to predict Hal-
lIucinated Semantics in Top-view (HST). The last Top-view
Parametric Prediction (TPP) module parses the HST and
provides predictions on road layout related attributes in top-
view. In this section, we will provide more details on net-
work structures for each of them.

1.1. Perspective Semantics Module

Given an I € RA*Wx3 the PS module would output
a OSP zP € R #>*Wx(C+1) "which denotes the probability
of each pixel belongs to specific category. Again, H and
W is the height and width of perspective RGB image and
C is the number of interested background categories. To
achieve that, we then follow the structure of [9] as our se-
mantic segmentation backbone. Specifically, we follow the
HRNetV2-W18 structure that re-scales the low-resolution
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representations through bilinear upsampling without chang-
ing the number of channels to the high resolution, and con-
catenates the four representations, followed by a 1x1 con-
volution to mix the four representations. 18 indicates the
width of the high-resolution convolution.

1.2. Top-view Semantics Module

As discussed in the main paper, our TS module consists
of a transformation module and a hallucination module. As
for the transformation module, it first maps the OSP to top-
view with the assumption that our camera/ego car is located
at the bottom center. We are interested in the region 60m
in front of the given camera and 15m to either side. To this
end, we represent the 60m x 30m semantic space in top-
view with a 256 128 x(C+1) image. For completeness, we
detail below the geometric transformation more formally,
though the reader is reminded that this step itself is standard
and does not contain new contributions. Denote the camera
pose w.r.t the world coordinate as [R,t], such that a 3D
point X is projected to a 2D point x via

#~ K(RX +1), ()

where ~ denotes equality up to a scale, and & denotes the
homogeneous form of . Suppose all the 3D points lie on a
plane (n,d), i.e.

n'X =d, (2)
we have
_ n't
w:K(R—i—id )X, 3)

where (R + ”TTt) is a 3D-2D homography mapping. In this
work, we assume that the extrinsincs [R, t] and the ground
plane parameters (n, d) could be obtained by calibration in
advance. Thus, we could choose the world coordinate to
be identical to the camera coordinate, and hence Eq. 2 and
& ~ kX fully determine the mapping between x and X
which is required in our task.

As for hallucination module, we borrow the structure
from [8] and utilize a 5-layer encoder and decoder U-Net.
Our input and output of hallucination module is of the same



Figure 1. The annotation tool for scene attributes in [10]: The
user sees the RGB image as well as the sparse depth points when
hovering over the image (red dot, all points can be highlighted
too). Note that the depth points can obtained either from LiDAR
or stereo images. The authors unitize LiDAR images provided in
original In KITTI and NuScenes dataset in practice. They ask an-
notators to fill out the form below the image with all attributes that
describe the scene. As soon as the annotators change any value in
the form, they exploit their render to generate an abstract semantic
top-view (left to the form), which gives immediate feedback.

size, or 256x 128 x(C+1). The encoder of U-Net down-
samples the feature maps and the decoder upsamples fea-
tures, applies feature concatenation with the correspond-
ingly cropped feature map from encoder and makes predic-
tions with concatenated features. We refer the final output
of hallucination module as HST.

1.3. Top-view Parametric Prediction Module

Our last module, TPP module, takes the HST as input
and outputs three separate predictions 7y, 7y, and 7. for each
of the parameter groups Oy, O and O, of the scene model
O. To this end, we introduce a multi-layer perceptron (h)
and convolutional neural networks (g ). Specifically, g is a
convolutional neural network (CNN) that converts top-view
semantics HST into a 1-dimensional feature vector f, €
RP. Receiving the f,, h then outputs the prediction for
each group. Note that we h consists of three branches, one
for each prediction group. We refer the readers to Sec. 3 for

more details on the definition of each attribute group.

2. Training Protocol

Instead of training the full model in an end-to-end man-
ner from scratch in the very beginning, we propose a multi-
stage training protocol. Given the full model f™!':

© = M) = (fo f o ), @)

where o defines a function composition. fP*, f* and f cor-
respond to three modules. We first train fP* and fix the pa-
rameters and then move on the training process of f'. After
finishing the first two modules, we further learn TPP mod-
ule f, or parameters in g and h. After finishing all three
modules, we then relax all modules and learn the full model
in an end-to-end manner. We adapt the ADAM and initiate
learning rate to le-4 during training. We set the epoch num-
ber to 100, 40 and 60 for fP*, f* and f, respectively. As for
the last stage of training, or end-to-end stage, we train f!!
50 epochs.

We observe that this protocol firstly guarantees that all
intermediate modules (PS and TS) can achieve meaningful
and high quality performance (OSP and HST). In the mean-
time, it also enables efficient training.

3. Dataset and Layout Parameters

Dataset: We utilize the annotated KITTI and NuScenes
data in [3, 10, 1 1], including around 17000 annotations in
terms of scene layout annotation. To avoid overlapping, an-
notations are split into training and testing depending on
the video sequences. Specifically, among all about 40 se-
quences, 8 of them are selected as testing set, or about 2k
images in total. Please note that the parametric annotations
are all from [10] and we summarize their annotation process
here for paper completeness.

Fig. 1 is from [10] and shows their web-based annotation
tool to collect the scene attributes ground-truth. The figure
caption explains how the annotation tool works.

Specifically, they ask annotators to describe the scene as
closely as possible with the available set of attributes and to
use the depth estimates only for distance-related attributes,
e.g. starting point of left or right sideroad. If a scene is
not representable with the tool, the user should indicate that
in the form too. Annotating binary or multiple class at-
tributes, such as existence of sidewalk or number of lanes
on the left, is fairly simple and can be done within seconds.
Other continuous attributes, such as road rotation or curva-
ture, are also easy to obtain. Specifically, annotators have
some discrete options and they select the one that fits the
current scene best. As soon as the annotators change any
value in the form, the render will provide semantic top-view



(left in Fig. 1), which gives immediate feedback. Perhaps
the most time-consuming part of the annotation process is
from starting point of sideroads, where the annotators move
mouse in the information from depth image (top figure in
Fig. 1), stop at where they believe the starting point is, read
the feedback from depth image (9.5m in this example) and
then type in the number in the form (right form in Fig. 1).
Since most of the data comes from a video sequence, they
let annotators process the data in order and the tool copies
all attributes from the previous frame automatically. Since
many attributes, e.g. number of lanes and existence of side-
walks, stay constant over a long time, this feature reduces
annotation cost significantly.

Compared to pixel-level semantic annotation that re-
quires labor-intense human annotation, e.g. about half an
hour to annotate only visible regions of an image in perspec-
tive view, the annotation process of [10] is far less painful.
In their experiments, it only takes a few seconds when the
scene is simple and less than a minute when facing com-
plicated scenarios, e.g. approaching intersections while the
distance to left and right side-road are not the same. On
average, it takes about 20s to annotate top parametric for a
single image.

As described in our paper, as long as we obtain the para-
metric annotation, we are able to render the top-view se-
mantics as well as semantics in perspective automatically,
which corresponds to the HST and OSP ground-truth we
used for training. We will release our generated/rendered
ground-truth for OSP and HST.

Layout Parameters: We follow the definition in [3].
Tab. 1 is a detailed table for the scene parameters as well
as their prediction space.

Note that during training process, we normalize the O,
to -0.5 to 0.5 and then discretize the prediction of each at-
tribute into 100 bins by convolving a dirac delta function
centered at ©. with a Gaussian of fixed variance. With the
help of multi-modal predictions, we can easily extend our
model with graphical models.

4. Pseudo-code for Renderer

We provide a simplified version of pseudo-code of our
renderer in Alg. 1. It is implemented with python code. We
firstly take the scene parameters, either come from ground
truth or predictions, and convert them into polygons for
each of the classes separately, i.e., road or sidewalk. Then
we draw these polygons with PIL. Please note that during
the drawing process, everything is relative to the ego car.
Specifically, we put the ego-car in the bottom center and
draw everything relative from there. For instance, if we
have two lanes to the right, we compute 2.5 times the lane
width (half the lane width for the ego lane itself) and the
road starts on the right side of the car. As our 256x 128

Algorithm 1 Pseudo code for rendering semantic map in
BEV

Input: Hyper-parameters such as default width of lane wy,
sidewalk wg and crosswalk w,; Scene parameters; Hyper-
parameter c that converts meter space to pixel space
Output: Semantic map in BEV

if We have N lanes on our right then

Prepare a rectangle whose top left corner is [64,0] and
bottom right corner is [64+(0.5+N)*c*w;,256];

end if
if Right sideroad exists then

if We have M lanes and distance to right sideroad is X
meter then

Prepare a rectangle whose top left corner is
[64+(0.5+N)*c*w;,(60-X-w; *M)*c] and bottom right cor-
ner is [128,(60-X)*c];

end if
end if
if Crosswalk on the right sideroad exists then

Prepare a rectangle whose top left corner is
[64+(0.5+N)*c*w;,(60-X-w;*M)*c] and bottom right
corner is [64+((0.5+N)*w;+w.)*c,(60-X)*c];

end if
if Sidewalk exist on the right handside then

if Delimeter width between mainroad and right sideroad
is Y meter then

Prepare a rectangle whose top left corner is
[64+((0.5+N)*w;+Y)*c,0] and bottom right corner is
[64+((0.5+N)*w;+ws+Y)*c,256];

end if
end if
Draw all rectangle in PIL

space representing the 60m by 30m space in real world, we
have the hyper-parameter ¢ = 4.27 that converts the meter
space to pixel space. Similar things apply for all other scene
parameters.

5. Illustration for baselines and ablation stud-
ies
In this section, we demonstrate various baselines and our
detailed design for ablation studies. Fig. 2 provides visual
examples for supervision, inputs and outputs of each base-
line. For instance, BEV [11] and BEV-J-O [3] take se-

mantics in top-view as input and outputs parametric layout
predictions. And such top-view semantics are obtained with



Figure 2. We provide more details for various types of supervisions, inputs and outputs of each baseline method.

Group \ Attribute Definition Prediction
Binary ©y Main road is curved or not Binary
Main road is one-way or not Binary
Main road delimiter existence Binary
Delimiter between main road and sidewalk Binary
Existence of left sidewalk Binary
Existence of right sidewalk Binary
Existence of crosswalk before intersection Binary
Existence of crosswalk after intersection Binary
Existence of crosswalk on the left side-road Binary
Existence of crosswalk on the right side-road Binary
Existence of crosswalk on the main road (no intersection) Binary
Existence of left side-road Binary
Existence of right side-road Binary
Main road ends the side-road Binary
Multiclass O, | Number of lanes on the right of ego car 0-11
Number of lanes on the left of ego car 0-11
Continuous ©. | Main road rotation -1/8mw-1187
Width of left side-road 0-30 m
Width of right side-road 0-30 m
Main road delimiter width 0-10 m
Starting point of left side-road 0-60 m
Starting point of right side-road 0-60 m
Distance to crosswalk on the main road 0-60 m
Main road sidewalk width 0-10 m
Main road sidewalk delimiter width 0-10 m
Main road curvature 1-Inf

Table 1. Attribute definition and their prediction space.



Figure 3. Model structures for baselines and ablation studies. Best view in color.

dense semantic and depth predictions thus corresponding
human annotations/supervisions are required. We would
like to note that although existing methods [4-7, 12] that
output top-view semantics with perspective image seem
to be potential alternative of our baselines for BEV and
BEV-J-0, these methods do not include important seman-
tics such as crosswalk or lane boundary due to their def-
inition and annotation limitation in semantics, leading to
incomparable situation. In addition, all these method re-
quires dense semantic annotations in either perspective or
top-view, which still validate our claim that our proposed
method requires far cheaper compared to existing meth-
ods. Another baseline, RGB+D [11], takes both RGB
and dense depth map as input and outputs also parametric
predictions, avoiding semantic supervisions in perspective
view. The only baseline that exploits the same supervision
type with our method is RGB. Together with our quan-
titative results, we can see that our proposed method ex-
ploits the least human supervision and is able to achieve the
SOTA performances w.r.t. existing methods that requires
additional labor-intense human annotations.

We further provide details of model structures for our
ablation studies in Fig. 3. As can be seen in this figure,
RGB exploits ResNet101 [2] as backbone while RGB+D
baseline is a two-head network where each branch uses
ResNet101 [2] to extract features. Instead of using fP* as
backbone, we found that when loss in PS Module is not
introduced, ResNet101 extracts more useful features thus

leading to better performance. RGB+PS contains the PS
module and directly predicts parametric predictions with
perspective outputs. Similarly, RGB+PS+1T further intro-
duces transformation module as another intermediate repre-
sentation. Ours is the full model that outputs all three types
of outputs with single perspective image as input.

6. More Results

More Ablations on Intermediate Representations In
our main paper, we did not compare with previous methods
as they either care predictions for visible regions [6, 7] or
have only one or two semantic classes for layout [4,6, 12].
However, as a reference, we report here the semantics in
perspective and top-view in [3, | 1]. Specifically, their av-
eraged IoU are 33.4% and 33.4% for OSP and 20.1% and
23.6% for HST, indicating the effectiveness of our method.
Please note that these numbers are not directly comparable
as [3,1 1] require additional depth and semantic supervisions
for visible regions.

To further demonstrate that the performance improve-
ments among RGB, RGB + PSS and our full model comes
from deep supervision and our intermediate representations
rather than deeper model, we include two more baselines
on KITTI [1], B1 and B1-p, which share the same model
architecture with our full model. BI is trained with para-



Figure 4. Full predictions of our propose model. From left to right: input RGB, OSP, HST, image rendered from parametric predictions

and image rendered from ground-truth attributes.

Figure 5. First row: Input perspective RGB image. Second row: Ground-truth annotation, our prediction and SOTA. Please note that both
methods provide parametric layout predictions and we visualize rendered BEV semantics in the 2nd row.

metric supervision while B1-p is with additional perspec-
tive view supervision. Scores are 81.2%, 77.9% and .223
for binary, multi-class and continuous variables for B1 and
82.0%, 82.8% and .161 for B1-p, which showcases the ef-
fectiveness of deep supervision.

As emphasized in our paper, our model does not depend
on the specific details of these sub-modules but is generally
applicable if this three-stage architecture holds. Existing
architecture, such as Monolayout [4], can be also exploited.
We did not perform such ablations as they are orthogonal to
our contributions.

More Qualitative Results: We provide visual examples
in Fig. 4. As can be seen in this figure, our model is able to
output satisfactory results on all three representations. We
are able to handle complex road layout such as arbitrary
number of lanes, curved road and with heavy occlusions.
Again, please note that OSP and HST are obtained without

per-pixel human annotations. We also provide qualitative
comparison with SOTA [3]. As can be found in Fig. 5, we
are able to provide more accurate layout predictions in BEV.
Specifically, we perform better when encountering curved
road or have sidewalks.

Evaluations on Intermediate Representations for Occlu-
sion Cases: We further provided some visual examples
for demonstrating the effectiveness of our method in terms
of handling occlusions. As can be found in these examples,
our model can provide occlusion-aware semantic predic-
tions on both perspective and top view. Visual examples are
shown in Fig. 6 showcasing our capability of handling var-
ious occlusions, curved road that beyond view or cars that
occlude road or sidewalk, in OSP and HST. And we high-
light the occlusions in red. More visual results can be further
found in Fig. 7 to demonstrate our ability in handling com-
plex road layout such as arbitrary number of lanes, curved



road and with heavy occlusions.

7. Limitations and Potential Negative Social
Impacts

Limitations Our representation is limited to the design of
road attributes. We are not able to handle arbitrary road
layouts, e.g. round-about, due to missing such attributes in
our design. It is our future work to extend our model to
handle more complex layouts.

Potential Negative Impact Though we aim to provide
road topology in BEV for path planning and decision mak-
ing in intelligent driving systems, drivers’ complete reliance
on such systems might cause severe traffic accidents under
complicated circumstances.
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Figure 6. First row: RGB. Second row: predicted OSP and HST. We can see that our model is able to handle various occlusions, e.g.
occluded curved road or road occluded by cars, very in both perspective and top view.

Figure 7. Full predictions of our propose model. From left to right: input RGB, OSP, HST and image rendered from parametric predictions.
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