Equivariance Allows Handling Multiple Nuisance Variables
When Analyzing Pooled Datasets

SUPPLEMENTARY MATERIAL

1. Proofs of theoretical results

In this section, we will provide the proofs of Lemma 4
and Lemma 5 discussed in the main paper.

Lemma. Given two latent space representations £;,£; €
S"~L, and the corresponding cosets g;H = T7(€;) and
ng = T(ej), 3'913 = gjgi_l € G such thatfj = Gij * Ez

Proof. Given g;H = 7(¢£;) and g; H =
gig;1 € G such that, g; H = g¢;;9:H.
Now using the equivariance fact (3) , we get,

T(£;), weuse g;; =

9;H = gij9:H
= 7(£;) = gi;7(£:)
= 7(¢;) = 7(gij - £:)

Now as 7 is an identification, i.e., a diffeomorphism, we
get £; = g;;¢;. Note that S"~! is a Riemannian homoge-
neous space and the group G acts transitively on S"1, i.e.,
given x,y € S"~!, 3g € G such that, y = g - x. Hence
from €; = g;;£; and the transitivity property we can con-
clude that g;; is unique. O

Lemma. Fora T : L — G/H as defined above, and a
mapping b : L — Z, the function ® : L — Z defined by

D) =7(£)-b(T()""-£) (D
is G-equivariant, i.e., ®(g - £) = g®(£).

Proof. Let £ € L. Consider the & mapping of g - £, that is
P(g-£)=7(g-£)-b(r(g-£)~"-0).

Using the fact (3) from the main paper, we have 7(g -
£) = gr(£) and 7(g - £)~' = 7(£)"'g~!. Substituting
these in ®(g - £), we get

B(g-£)=gr(0)-b(r(€) g9
= g7(£€)b (T(Z )
Thus, ®(g - £) = gP ()

2. Details on Evaluation Metrics

Recall from Section 4 of the paper, our discussion on
three metrics — Agq, Adv and M. While Agq and M
are variants of distance measure on the latent space, Adv
assesses the ability to predict the nuisance attributes from
the latent representation (and is therefore probabilistic in
nature). Observe that A g4 and M are (euclidean) distance
measures and could be very different depending on the nor-
malization of the vectors. For our purposes of evaluating
these latent vectors/features in downstream tasks, we per-
form a simple feature normalization in order to obtain 0 — 1
latent vectors given by,

P Zi — min(,'zi) . @)

max(z;) — min(z;)

Our feature normalization is composed of two steps: (i)
centering — the numerator in (2) ensures that the mean of
z (along its coordinates) is 0; and (ii) scale — the denom-
inator projects the features z on the sphere at origin with
radius ||z;]|Z, = max(z;) — min(z;) > 0. Note that our
scaling step can be thought of as the usual projection in a
special case: when z; is guaranteed to be nonnegative (for
example, when z; represent activations), then ||z;||Z, sim-
ply corresponds to a lower bound of the usual infinity norm,
|lz|loo (hence projection on a scaled £, ball). We adopt this
normalization only to compute A g4 and M measures, and
not for model training.

For computing the Adv measure, we follow [7] to train
an adversarial neural network predicting the nuisance at-
tributes. We use a three-layered fully connected network
with batch normalization and train for 150 epochs. [0] uses
similar architecture for the adversaries with different hid-
den layers of 0,1,2,3. We found that a three-layer adver-
sary is powerful enough to predict the nuisance attributes
and hence we use it to report the Adwv measure.

3. Understanding ADNI dataset

Dataset. The data was downloaded from the Alzheimers
Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investi-
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Figure 1. Sample Images from ADCP dataset. (a) MRI images on control subjects from the ADCP dataset for different sites in the age group 70-80.
(b) Images obtained from Site 3 for three extreme age groups. The gantt chart on top of the image indicates the respective age range in the other sites.

(a) GE (b) Siemens

Figure 2. Scanner effects on images. Two imaging protocols are shown:
(a) Siemens, (b) GE. The yellow region is the cortical ribbon segmenta-
tion, and the green circle shows that the imaging protocol from different
manufacturers have an effect on the scan. Image borrowed from [1].

gator Michael W. Weiner, MD. ADNI was set up with an
objective to measure the progression of mild cognitive
impairment (MCI) and early Alzheimers disease (AD)
using serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers. We
have three imaging protocol (scanner) types in the dataset,
namely, GE, Siemens and Phillips. The count of samples
AD/CN in each of these imaging protocols are provided in
Table 1. An example illustration (borrowed from [!]) of
using different scanner on the images is shown in Figure 2.
Preprocessing. All images were first normalized and skull-
stripped using Freesurfer [3]. A linear (affine) registra-
tion was performed to register each image to MNI template
space.

4. Understanding ADCP dataset

Participants. The data for ADCP was collected through an
NIH-sponsored Alzheimer’s Disease Connectome Project
(ADCP) UO1 AGO051216. The study inclusion criteria for
AD (Alzheimer’s disease) / MCI (Mild Cognitive Impair-

Table 1. Sample counts for ADNI dataset

Imaging Protocol AD CN
Manufacturer=GE Medical Systems 44 T8
Manufacturer=Philips Medical Systems 32 50
Manufacturer=Siemens 83 162

ment) patients consisted of age between 55-90 years, will-
ing and able to undergo all procedures, retains decisional
capacity at initial visit, meets criteria for probable AD or
meets criteria for MCIL.

Scanners. MRI images were acquired at three distinct sites
on GE scanners. T1-weighted structural images were ac-
quired using a 3D gradient-echo pulse sequence (repetition
time (TR) = 604 ms, echo time (TE) = 2.516 ms, inversion
time = 1060 ms, flip angle = 8°, field of view (FOV) = 25.6
cm, 0.8 mm isotropic). T2-weighted structural images were
acquired using a 3D fast spin-echo sequence (TR = 2500
ms, TE = 94.398 ms, flip angle = 90°, FOV = 25.6 cm, 0.8
mm isotropic).

Preprocessing. The Human Connectome Project (HCP)
minimal preprocessing pipeline version 3.4.0 [4] was fol-
lowed for data processing. This pipeline is based on FM-
RIB Software Library [5]. Next, the T1w and T2w images
are aligned, a B1 (bias field) correction is performed, and
the subject’s image in native structural volume space is reg-
istered to MNI space using FSL’s FNIRT [2]. Only Tlw
images in the MNI space were used for further analysis and
experiments.

Data Statistics. We plot the distributions of several at-
tributes in this dataset conditioned on the site. In Figure 4,
we show that the values of age and cognitive scores differ
across the three sites in this dataset. Cognitive scores are
computed based on an test assigned to the patients. Higher
scores indicate higher cognitive operation in the patient. Ta-
ble 2 shows the sample counts for target variable of predic-
tion AD (Alzheimer’s disease) and Control group.

Table 2. Sample counts for ADCP dataset

AD Control Female Male
sitel 10 39 29 20
site 2 10 33 30 13

site3 5 19 14 10
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Figure 3. t-SNE plots of latent representations of 7(£) . For both ADCP (left) and German (right), the the latent vectors of the equivariant encoder are
evenly distributed with respect to the age covariate value. The non-equivariant space is generated from the naive pooling model. Different colors denote the

discretized set of age covariate value present in the data.
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Figure 4. Distribution of attributes in the ADCP dataset. On the left
we observe the distribution of age for the three different sites present in
the ADCP dataset. On the right, we see the distribution of the cognitive
scores. The cognitive scores are computed based on an ADCP test that as-
sesses executive function. Higher scores indicate higher level of cognitive
flexibility. Both age and cognitive scores are observed to vary across the
sites.

5. Visualizing the latent space

In the paper Figure 4, we have seen the latent space
7(€) for the samples in the ADNI and the Adult datasets.
Here, we will see similar qualitative results for the German
and the ADCP dataset in Figure 3 of the supplement. In
the plots, the latent representations for a non-equivariant
encoder are stretched thoughout the latent space. In con-
trast, the representations of an equivariant encoder, for a
discretized value of Age, are localized to specific regions.
Further, these representations have a monotonic behaviour
with respect to the values of Age.

6. Hyper-parameters and NN Architectures

For tabular datasets such as German and Adult, our en-
coders and decoders comprise of fully connected networks
and a hidden layer of 64 nodes. The dimension of the quo-
tient latent space 7(¢;) is 30. Adam is used as a default
optimizer and the learning rate is adjusted based on the val-
idation set.

Imaging datasets like ADNI and ADCP require 3D con-
volutions and a ResNet architecture as the backbone. The
last layer is used to describe the quotient space 7(£;). We
present the residual and the fully connected block below.

Detailed architectures can be viewed in the code.
Listing 1. Residual Block

1 BatchNorm3d
2 Swish
3 Conv3d
4 BatchNorm3d
5 Swish
6 Conv3d
Listing 2. Fully Connected Block
7 AdaptiveAvgPool3d
8 Flatten
9 Dropout
10 Linear
11 BatchNormld
12 Swish
13 Dropout
14 Linear

7. A note on multi-objective scaling factors

Recall from the Algorithm 1 of the main paper that our
loss function for each stage comprises of reconstruction
and prediction losses in addition to the objectives concern-
ing equivariance and invariance. These multi-objective loss
functions require scaling factors that upweight one objec-
tive over the other. These scaling factors group up as hyper-
parameters for the Algorithm. In our experiments, it was
observed that the results were robust to a range of scaling
factor choices. For the results reported in Table 1 of the
paper, they were identified through cross-validation. Here
we provide an example for the scaling factors used for the
Adult dataset, please refer to the bash scripts available in
the code for the scaling factors of other datasets.

» Stage one: Equivariance to Covariates

— Equivariance Loss Lgage1
Scaling Factor : 1.0

— Reconstruction Loss ), || X; — D(E(X,))|
Scaling Factor : 0.02

» Stage two: Invariance to Site



— Invariance Loss MMD
Scaling Factor : 0.1

— Prediction Loss ||Y — h(®(£))]|?
Scaling Factor : 1.0

— Reconstruction Loss ||[£ — ¥ (®(£))]?
Scaling Factor : 0.1

We refer the reader to Algorithm 1 and Section 3 of the main
paper for the details on the notations used above.
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