APRIL: Finding the Achilles’ Heel on Privacy for Vision Transformers
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A. Does twin data come from lacking of param-
eters involved in gradient matching?

In Sec. 4.2 and Fig.7 we demonstrate and show that rwin
data can emerge from gradient attacks after disabling learn-
able position embedding. Formally, a twin data appears
when a privacy attacker performs gradient matching in a Vi-
sion Transformer without matching gradients from position
embedding. Some may doubt that twin data may come
from lack of parameters involved in gradient matching.
We give explicit clues that this is not the case.

We demonstrate this by using examples on MNIST. We
use Architecture B (as illustrated in Fig. 1(B)) with encoder
depth 4, hidden dimension of 384. So the overall parame-
ters involved in gradient matching w/ or w/o position em-
bedding are set out in the following table:

w/ pos_emb
7,123,210

w/o pos_emb
7,116,682

Table 2. Parameters involved in gradient matching, using Fig.1
Architecture (B) for MNIST, encoder depth = 4.

Here we make a more radical assumption: if we still use
position embedding and twin data do not occur, when in-
volving much less parameters than in the case without po-
sition embedding, then we can empirically prove that ’twin
data” do not come from lacking of model parameters.

For comparisons, we respectively disable the matching
of gradients from a specific encoder layer, denoted as en-
coder 1, encoder 2, encoder 3 and encoder 4. In these four
settings, the overall parameters involved in gradient match-
ing are 6,533,002, much fewer than the case when we dis-
able position embedding, which has 7,123,210 parameters
involved.

From Fig.9 we observe that: twin data do not come from
lacking of parameters involved in optimization.

without
encoder 4

without
encoder 3

without
encoder 2

without
encoder 1

without
pos-_emb

Figure 9. Results with different sets of parameters involved.
B. More results

B.1. Optimization-based attack towards single im-
age data

Here we show more ImageNet attack results in Fig.10
Under most cases, the attacks are successful and expose
enough information to break privacy. Depending on the
content of original images, attacks can have different lev-
els of failures sometimes, when the optimization fall into a
bad local minimum and the result has block artifacts. The
hardness of attack does not have a preference for certain
classes; it depends on the content of original sample. We
can observe that, images with higher contrast are easier to
have stronger block artifacts on their reconstructions.

We display 6 successful results and 2 failure cases in
Fig.10. Each row represents the reconstruction process of
a single image; ground-truth input image is shown on the
left of each row.



Failure attack results.

Figure 10. More results on ImageNet for single image attacks. From left to right: the ground-truth image; reconstrutions at iteration 50,
100, 500, 1000, 2000, 3000, 5000.

B.2. Optimization-based attack towards batched
images

Optimization-based APRIL attack obtains great results
on batched images. We found that inverting a batch of



Figure 11. Reconstruction of a batch of 4 ImageNet samples. The first row: ground-truth batch images. The second row: reconstruction
results by optimization-based APRIL.
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Figure 13. Reconstruction of the image batch in Fig. 12 using optimization-based APRIL.



several images is not markedly harder than inverting sin-
gle image; with the same setting of iterations and learning
rates, even if the batch size is increased from 4 to 24, the
reconstructions are still recognizable. We show the results
in Fig.11 and Fig.13.

B.3. Closed-form APRIL attack towards batched
image data

It is worth to notice that the closed-form APRIL attack
uses the averaged mean of gradients of all samples in a
batch to solve the closed-form solution. Due to the dimen-
sionality, we can only obtain a single image proxy for the
whole batch. The results are shown in Fig.14, which give
almost no useful information towards original input images.

As another closed-form attack, R-GAP [1] provides re-
sults of their approach on batched data as well in their Fig-
ure 7. Their results are easy to understand since they look
like additive combinations of the original batch of images.

In contrast, our results are not recognizable and easy to
be interpreted since we do not obtain the solution in an ad-
ditive way, but in a multiplicative way.
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Figure 14. Closed-form APRIL attack results on batched inputs,
which show perplexing patterns of tanglement.
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