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A. More about Geometric Distillation: Proof
and Simplicity
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where λ1, λ2, λ3 and λ4 are constants with respect to
weights of corresponding parts in the batch, (x̂i, x̂j , ...) ∈
P means these samples share the same ID. When Lrt

G is op-
timal, ∆ part should be the optimal that for any positive pair
(x̂i, x̂j) ∈ P, their residual feature vector in preceding fea-
ture space ∆zn−1

ij = zn−1
i − zn−1

j and in evolving feature
space ∆zn

ij = zn
i − zn

j is parallel and with the same orien-
tation. Then, for instance (Fig. 1), due to the fundamental
AAA criterion of triangle similarity, △ABC ∼ △A′B′C ′.
The scaling coefficient is AB

A′B′ = AC
A′C′ = BC

B′C′ = r and

translation vector is t, i.e.,
−→
OA + t =

−−→
OA′, where O is the

Origin (not marked in Fig.). Because the sides are parallel
with the same orientations and the triangles are arbitrary,
no rotation and reflection is allowed. As the adjacent trian-
gles, △ABD ∼ △A′B′D′ and share the same r and t, i.e.,

AD
A′D′ = AB

A′B′ = BD
B′D′ = r,

−−→
OD + t =

−−→
OD′. Similarly,

all triangles in polyhedron share the same r and t, which
implies the polyhedron in evolving space is similar to that
in preceding space with scaling coefficient r and translation
vector t. Then we can simplify Lrt

G as:
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Note that the residual ∆ part will be optimal when the
∆ part is optimal, so omitting the residual ∆ part will not
change the objective. All AGD / GD experiments in our
work are based on Equ. 2 unless otherwise specified.
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Figure 1. Illustration for proof. The polyhedron in preceding fea-
ture space (blue) and the polyhedron in evolving feature space
(green) are encouraged to be geometrically similar.

B. More about Augmented Distillation
In the default setting, our augmented distillation has 2

peers, that one dreaming image is augmented into 2 views.
When peers is greater than 2, we rewrite the LAD as below:

LP
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where P is the set of peers, i.e., P = {x̂′, x̂′′, x̂′′′, ...}, and
peers = |P|. In order to reduce the GRAM when adopting
AD mechanism, we divide LAD into LP

ADs and reformulate
the algorithm as below:

Algorithm 1 Augmented Geometric Distillation (n-th task)
Input: Incremental dataset DTn and fixed base model fn−1

θ .
Output: Converged evolving model fn

θ .
1: Generate dreaming memory MT1:n−1 with fn−1

θ .
2: Initialize the evolving model fn

θ with fn−1
θ .

3: while not converged do
4: Sample x ⊂ DTn .
5: Sample and augment twice x̂ ⊂ MT1:n−1 → P .
6: for x̂s ∈ P do
7: Augment x → x′. // random aug each time.
8: Calculate Lrep with fn

θ (x
′) and fn

θ (x̂
s).

9: Calculate LP
AD(x̂s,P;Lrt

G ) between {fn−1
θ (x̂t)}x̂t∈P

and fn
θ (x̂

s).
10: Calculate 1

|P|

[
Lrep + λLP

AD(x̂s,P;Lrt
G )

]
and back-

ward.
11: end for
12: Update θ in fn

θ .
13: end while
14: Fix the evolving model fn

θ for the next step as base model.

Note that, when adopting AD, we augment incremen-
tal data x into peers views. The trick is mainly designed

Method 5 steps 10 steps Method 5 steps 10 steps

LUCIR w/ Lrt
G 65.3 64.1 TPCIL 65.3 63.6

POD w/ AGD 65.7 65.3 POD w/ DDE 65.4 64.1

Table 1. Comparison on CIFAR100. Note that we uses NME as
classifier for AGD and report results from original paper from TP-
CIL and DDE. TOPIC is not included due to its few-shot setting.

to correct the bias in BN layers. If much more dreaming
data is fed into model, it will cause bias to the preceding
data distribution in BN layers. Such bias is detrimental to
ReID, which is sensitive to bias in BN as discussed in Dual-
Norm [4]. And this trick brings no extra performance gain
in supervised training.

C. Further Discussion
C.1. Drawing Parallels with Other Topology / Geo-

metric Works

Basically, other topological/geometric methods managed
to preserve the cosine similarity, Mahalanobis distance, Euc
distance or logits between neighbors to maintain topology.
These methods only modulate relationship as a distance
metric (which is a value) between samples, while GD mod-
ulates relationship as a vector in high-dimensional space.
Therefor, richer information in channel-wise could also be
preserved and GD constrains the geometric structure more
strictly. More comparison on CIFAR100 is shown in Tab. 1.

C.2. Knowledge Transfer and Trade-off

Method Data MSMT17
mAP Rank-1

Oracle Real 46.2 71.6
Knowledge Transfer Dreaming 45.2 70.7

Table 2. Extensive knowledge transfer experiments. Student
model is trained with LAGD only on the dreaming data.

To provide deeper insight into the trade-off between
learning and reviewing, we conduct knowledge transferring
that I is fed into the student to distill knowledge from ”Or-
acle” teacher model. The student model is initialized with
ImageNet [10] pre-trained parameters. After convergence,
the student is almost capable to act as well as teacher does
(as illustrated in Tab. 2). However, when feeding the incre-
mental data from another domain, the student model fails to
reproduce the results in Tab. 2, which reveals that natural di-
vergence exists between incremental data and I and further
explains the contradiction between stabilizing the feature
space for preceding domains and adapting feature space for
the incremental domain. And also such trade-off between
preceding and incremental task is still an open-issue in CIL
and could be observed in all typical methods in CIL. When
compared with these methods, AGD achieves better balance
and overall performance.



C.3. Discussion with CBN

Testing Set MSMT17
Seq Length Method mAP Rank-1

1 - 100% 100%

2
CBN (w/o exemplars) 58.9% 74.5%
CBN (w/ exemplars) 84.6% 91.6%

AGD 90.7% 94.6%

3
CBN (w/o exemplars) 39.4% 56.6%
CBN (w/ exemplars) 76.0% 86.4%

AGD 76.5% 85.5%

Table 3. Results on the percentages of preserved performance
when MSMT17 acts as the first base task.

CBN [14] proposed a novel BN layer for ReID that input
image is normalized with regard to its camera ID. CBN re-
ports its significant improvements in incremental scenario.
According to the protocol in CBN, we report the percentage
of preserved performance after incremental learning when
compared with “Oracle” (detailed in CBN Sec. 4.2). The
results in Table 3 are the average preserved performance
when MSMT17 serves as T1 and leads task sequences with
length of 2 or 3. The great improvements over CBN (w/o
exemplars) demonstrate the superiority of our AGD frame-
work and we believe this is because of dreaming memory
for replaying and effective distillation. Note that AGD does
not store exemplars, all memory is recovered by dreaming.
And when compared with CBN (w/ exemplars), AGD still
surpasses CBN in task sequences with length of 2 and is
competitive in task sequences with length of 3.

D. More Implementation Details

D.1. More about Lrep

In the baseline solution and our AGD framework, basic
representation training is indispensable. Concretely, Lrep

contains Lce and Ltri. Let networks fn
θ (·) encode the input

(x, y). Then the loss for representation is formulated as
follow:

Lce(x) = −
∑
i

δyi=y log[p(yi|x, fn
θ )], (5)

Ltri(x) = softplus(max dap −min dan), (6)

where p(yi|x, fn
θ ) is the probability that x is an image of

ID yi. δyi=y denotes the identity function that outputs 1
if yi = y and 0 otherwise. softplus(·) is expressed as
log(1+exp(·)). dap denotes Euclidean distances of positive
pairs in mini-batches and dan for negative. We simply add
Lce and Ltri as the loss for representation training:

Lrep(x) = Lce(x) + Ltri(x). (7)

D.2. More about Lcos,Lℓ1 and Lℓ2

In our ablation studies in Sec. 5.4, we attempt to make
comparisons between L∆ and Lcos,Lℓ1,Lℓ2. Lcos expects
embeddings of a certain exemplar output by student and
teacher to have the same orientation, while Lℓ1 and Lℓ2 en-
force the embeddings to remain static. We formulate them
in detail as below:

Lcos(z
n−1, zn) = 1−⟨zn−1, zn⟩ = 1−z̄n−1·(z̄n)T , (8)

Lℓ1(z
n−1, zn) =

∑
i

|zn−1
i − zni |, (9)

Lℓ2(z
n−1, zn) = ∥zn−1 − zn∥22, (10)

where z̄ denotes the normalized feature z, zi is the i-th ele-
ment in feature z and ∥·∥2 stands for ℓ2 distance. Note that
Lℓ2 here is the MSE loss, where is equivalent to square of
ℓ2 distance.

D.3. More about Dreaming Memory

Concretely, a batch of images x̂, initialized with noise,
and their random IDs ŷ are fed into the fixed networks. To
attach discriminative information in semantics level to the
images, images are updated by gradients of cross-entropy
loss from the networks. To further constrain the synthe-
sized images located in base domains, images are expected
to match the statistics in fixed BN layers with ℓ2 loss.

The overall loss for synthesis is formulated as:

Lsyn(x̂) = Lce(x̂) + α
∑
l∈L

∥mean(x̂l)−meanl∥22

+ β
∑
l∈L

∥var(x̂l)− varl∥22 + Lprior,
(11)

where Lce(x̂) computes cross-entropy loss of x̂ as formu-
lated in Equ.5. mean(x̂l) and var(x̂l) denote mean and
variance vectors calculated on-the-fly in l-th BN layer and
as their targets, meanl and varl are mean and var vector
recorded in l-th BN layer. Lprior constrains smoothness in
pixel level, as detailed in DeepInversion [13].

After the generation, the dreaming stage builds a dream-
ing memory M = {(x̂i, ŷi)} in base domains and each
image x̂ is attached with discriminative feature of a certain
ID ŷ.

Demonstration. As illustrated in Fig.2, synthesized im-
ages basically contain most discriminative regions of each
ID. For example, in the second grid, a woman in khaki with
a stripe handbag can be observed in both images. However,
due to the generating strategy with gradients, the dreaming
memory fails to recover details in original images and just
estimate distributions of preceding data, which protects the
privacy.



Figure 2. Comparison between synthesized images and raw images in MSMT17. In each grid, the raw image is shown on the left and
corresponding synthesized image is shown on the right. IDs of these pairs, in sequence, are 118, 183, 377, 425, 32, 428, 615, 786, 1007
and 843.

Implementation Details. To generate the dreaming
memory, we follow the training strategy in DeepInver-
sion [13]. We set batch size to 64 and initialize each batch
with Gaussian noise. Adam optimizer with learning rate 0.2
is adopted to update images. α and β is set to 0.01. Lprior

consists of total variant ℓ2 loss and ℓ2 loss which is directly
cast on the images. And their coefficients are 1e-4 and 1e-
5 correspondingly. Before fed into the fixed networks, the
inputs are augmented by random flipping. The two-stage
accelerating is leveraged, as details in DeepInversion [13]
(Sec. 4.4 b) Multi-resolution synthesis).

D.4. Details in Other Methods

λ denotes the weight of proposed loss or objectives for
distillation or consolidation.

EWC [5]. λ = 1e4. The optimizer is Adam with initial
learning rate of 1e-5.

MAS [1]. λ = 1e5. The optimizer is Adam with initial
learning rate of 1e-5.

LwF [6]. λ = 3, T = 2, where T is the temperature in
prediction. The optimizer is SGD with initial learning rate
of 1e-2.

AKA [8]. We reproduce the experiments with official
code here1. Note that we ran all experiments under our set-
tings for fair comparisons (e.g. 1. joint loss of CE and triplet
loss. 2. strong augmentation (REA sh=0.4). 3. many
well-recognized tricks in BoT [7]). Our baseline settings
lead to stronger supervision baseline and more forgetting
than original results in AKA, or in short, our settings are
more challenging.

iCaRL [9]. λ = 2, T = 2, where T is the temperature in

1https://github.com/TPCD/LifelongReID

prediction. The optimizer is SGD with initial learning rate
of 1e-2.

ABD [12]. λ = 2. The optimizer is SGD with initial
learning rate of 1e-2.

LUCIR (w/ cos) [3]. λ = 5. The optimizer is SGD with
initial learning rate of 1e-2.

LUCIR (w/ ℓ1) [3]. λ = 0.005. The optimizer is SGD
with initial learning rate of 1e-2.

LUCIR (w/ ℓ2) [3]. λ = 0.005. The optimizer is SGD
with initial learning rate of 1e-2.

PODNet (w/ ℓ2) [2]. λ1 = 5, λ2 = 8, where λ1 is the
weight for cos distillation term of final embeddings and λ2

is the weight for cos distillation term of pooled intermediate
attention. The optimizer is SGD with initial learning rate of
1e-2. We reproduce the distillation term with official code
here2.

GeoDL (w/ ℓ2) [11]. λ1 = 5, λ2 = 4, where λ1 is the
weight for cos distillation term and λ2 is the weight for
GeoDL. The optimizer is SGD with initial learning rate of
1e-2. We reproduce the distillation term with official code
here3.

D.5. More about CIL

Nearest-Mean-of-Exemplars (NME). In CIL, the
memory contains exemplars, which are the real images
of preceding classes. Given fixed networks fθ, we
extract prototype vectors of all classes, i.e., µyi

=
1

|Pyi
|
∑

x∈Pyi
fθ(x), where Pyi

is the exemplar set of class
yi. To predict the label of an image x, we calculate the
distance between its feature and all prototype vectors and

2https://github.com/arthurdouillard/incremental learning.pytorch
3https://github.com/chrysts/geodesic continual learning



assign the label, whose prototype vector is the most similar:

y∗ = argmin
i

∥µyi
− fθ(x)∥2. (12)

We leverage NME not fully connected layer as our clas-
sifier mainly because it is similar to the retrieval process that
ranking distances between image features and gallery in the
feature space.

About How to Load Memory Data. Due to our geo-
metric distillation, we have to load memory data with CK
sampler, which loads C class and K samples for each class
(C × K samples in total). To fullfil such request, we split
batch-size into two parts (incremental data and memory
data). For incremental data, we first calculate the percent-
age of incremental data in all data and assign the same part
in each batch-size. For memory data, it takes and fills the
rest part in each batch-size with C × K memory samples.
And typically, K = 4.

Average Incremental Accuracy. After each incremen-
tal step, the model is tested on the test set of all seen classes
and reports the accuracy. We average all these accuracies
to get average incremental accuracy and report the final re-
sults after 3 runs with different random seeds.
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