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1. Proof of Proposition 1
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follows N (µ1:C(PK),Σ1:C(PK)). Let Σij(PK) be the
covariance matrix of wi and wj , µi(PK) be the mean of
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Proof: Given the Gaussian distribution assumption, we
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where Inequalities 4 and 6 are from Jensen’s inequality
(E(logX) ≤ logE(X) [6]). Besides, due to zTi (wc −
wyi

) being a Gaussian variable following N (zTi (µc −
µyi

), zTi Ac,yi
zi), the expectation in Equation 7 is obtained

by leveraging the moment-generating function:

E(etX) = E(etµ+
1
2σ

2t2), X ∼ N (µ, σ2). (9)

2. Datasets
The details of the 12 downstream datasets are shown in

Tabel 1. The accuracy metric of each dataset follows CLIP
[13].

3. Baselines
The regularization of Linear Probe CLIP is selected by

the validation set on each dataset, following the hyperpa-
rameter sweep strategy in CLIP [13]. Note that the valida-
tion set, which is used to select task-specific hyperparame-
ters, is only used in Linear Probe CLIP.

For CoOp [14], we use the SGD optimizer with learning
rate of 0.001 and the batch size of 20. The learning rate has
a cosine decay schedule. The number of training epochs
is 100. The prompt length is 16. Our implementation of
Prompt Tuning has slightly better results than those reported
in [14].

4. Results
Table 2 shows the detailed results of various methods

with the same pre-trained CLIP model (RN50) on the 12
datasets.
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Dataset Classes Train Size Test Size Accuracy metric
ImageNet [4] 1000 1,281,167 50,000 accuracy
CIFAR-10 [8] 10 50,000 10,000 accuracy
CIFAR-100 [8] 100 50,000 10,000 accuracy
STL-10 [3] 10 1,000 8,000 accuracy
Food-101 [1] 101 75,750 25,250 accuracy
Stanford Cars [7] 196 8,144 8,041 accuracy
FGVC Aircraft [10] 100 6,667 3,333 mean per-class
Oxford-IIIT Pets [12] 37 3,680 3,669 mean per-class
Caltech-101 [9] 102 3,060 6,086 mean per-class
Oxford 102 Flowers [11] 102 2,040 6,149 mean per-class
EuroSAT [5] 10 10,000 5,000 accuracy
Describable Textures (DTD) [2] 47 3,760 1,880 accuracy

Table 1. Datasets in our experiments.
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Zero-Shot CLIP 0 59.8 71.6 40.6 94.4 80.6 54.3 17.0 85.5 84.5 65.5 41.8 41.2
1 22.1 44.3 18.2 80.6 31.4 24.3 13.0 30.2 56.7 56.1 46.8 29.8
2 31.9 53.5 26.6 86.9 45.1 36.8 17.9 40.5 68.7 74.9 55.5 41.4

Linear Probe CLIP 4 41.4 62.2 35.6 92.2 56.8 49.5 23.9 56.4 79.0 86.3 65.7 51.9
8 49.4 70.1 43.6 94.3 67.1 61.2 29.4 67.5 84.3 91.5 75.1 59.0

16 55.9 73.8 50.5 95.0 73.7 70.0 36.0 75.1 87.3 95.6 80.7 64.3
1 53.4 71.8 41.3 94.1 77.5 54.0 17.7 86.5 83.6 70.0 47.1 44.1
2 55.7 73.2 42.4 94.3 76.4 57.0 19.9 86.7 84.2 77.8 60.4 48.4

CoOp 4 57.9 75.4 45.7 94.9 77.0 61.4 22.7 87.2 85.5 84.8 69.4 53.4
8 60.5 76.7 49.7 95.3 77.8 65.5 26.3 87.8 87.4 89.9 76.5 58.7

16 62.3 78.4 53.3 95.6 79.3 70.5 30.1 88.4 89.6 93.4 81.4 65.0
1 61.8 74.6 47.8 95.1 80.8 60.1 22.2 88.2 86.7 77.5 58.5 50.9
2 62.3 76.4 49.4 95.3 80.6 63.7 24.8 88.4 87.1 85.2 69.0 56.2

ProDA (ours) 4 63.6 78.3 51.7 95.7 80.8 67.9 27.5 89.0 88.7 90.6 75.3 60.0
8 64.7 79.6 54.3 96.1 81.7 72.1 31.5 89.4 89.8 93.6 80.1 65.0

16 65.3 80.9 57.0 96.3 82.4 75.5 36.6 90.0 91.3 95.5 84.3 70.1

Table 2. Detailed performance (%) of various methods on the 12 downstream datasets. “# Shot” denotes the number of training samples
per class.
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