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1. Proof of Proposition 1

Proposition 1 Suppose that wi.c = [wT,..,wZ]T € R
follows N (p1.c(P¥), B1.c(PX)). Let X;;(PX) be the
covariance matrix of w; and wj, [i; (PX) be the mean of
wi, and A; ; = 3+ X5 — X, — Xj;. Then it holds that
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where Inequalities 4 and 6 are from Jensen’s inequality
(E(log X) < logE(X) [6]). Besides, due to z} (w. —
w,,) being a Gaussian variable following N (zI (p. —
oy ), 22 Acy,Zi), the expectation in Equation 7 is obtained
by leveraging the moment-generating function:

E(eX) = BT 37°7) X ~ N(p,0%).  (9)

2. Datasets

The details of the 12 downstream datasets are shown in
Tabel 1. The accuracy metric of each dataset follows CLIP

[13].

3. Baselines

The regularization of Linear Probe CLIP is selected by
the validation set on each dataset, following the hyperpa-
rameter sweep strategy in CLIP [13]. Note that the valida-
tion set, which is used to select task-specific hyperparame-
ters, is only used in Linear Probe CLIP.

For CoOp [14], we use the SGD optimizer with learning
rate of 0.001 and the batch size of 20. The learning rate has
a cosine decay schedule. The number of training epochs
is 100. The prompt length is 16. Our implementation of
Prompt Tuning has slightly better results than those reported

in [14].
4. Results

Table 2 shows the detailed results of various methods
with the same pre-trained CLIP model (RN50) on the 12
datasets.
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Dataset Classes Train Size Test Size Accuracy metric
ImageNet [4] 1000 1,281,167 50,000 accuracy
CIFAR-10 [8] 10 50,000 10,000 accuracy
CIFAR-100 [8] 100 50,000 10,000 accuracy
STL-10 [3] 10 1,000 8,000 accuracy
Food-101 [1] 101 75,750 25,250 accuracy
Stanford Cars [7] 196 8,144 8,041 accuracy
FGVC Aircraft [10] 100 6,667 3,333 mean per-class
Oxford-IIIT Pets [12] 37 3,680 3,669 mean per-class
Caltech-101 [9] 102 3,060 6,086 mean per-class
Oxford 102 Flowers [ 1] 102 2,040 6,149 mean per-class
EuroSAT [5] 10 10,000 5,000 accuracy
Describable Textures (DTD) [2] 47 3,760 1,880 accuracy
Table 1. Datasets in our experiments.
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Zero-Shot CLIP 0 598 716 406 944 806 543 170 855 845 655 418 412

1 22.1 443 182 806 314 243 13.0 302 567 56.1 46.8 29.8

2 319 535 266 869 451 36.8 179 405 687 749 555 414

Linear Probe CLIP 4 414 622 356 922 568 495 239 564 790 863 657 519

8 494 70.1 436 943 67.1 612 294 675 843 915 751 590

16 559 738 505 950 737 700 360 75.1 873 956 80.7 643

1 534 71.8 413 941 775 540 1777 865 836 700 471 44.1

2 557 732 424 943 764 570 199 867 842 778 604 484

CoOp 4 579 754 457 949 770 614 227 872 855 848 694 534

8 605 767 497 953 778 655 263 878 874 899 765 587

16 623 784 533 956 793 705 30.1 884 89.6 934 814 650

1 61.8 746 478 95.1 80.8  60.1 222 882 86.7 775 585 509

2 623 764 494 953 806 637 248 884 87.1 852 69.0 56.2

ProDA (ours) 4 636 783 517 957 808 679 275 890 887 906 753 60.0

8 647 796 543 96.1 817 721 31.5 894 898 936 80.1 650

16 653 809 570 963 824 755 366 90.0 913 955 843 70.1

Table 2. Detailed performance (%) of various methods on the 12 downstream datasets. “# Shot” denotes the number of training samples
per class.
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