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I. More About DCLS Deconvolution
In this section, we provide additional analysis of the deep

constrained least squares (DCLS) deconvolution module.
Recall the reformulated degradation model in our paper:

y = x↓s
∗ kl + n. (1)

Note that this degradation model involves a deblurring prob-
lem on the downsampled image x↓s . Our work deals with
it by incorporating the DCLS deconvolution module in the
feature space and choosing to predict smooth filters for
each channel through a CNN network (details are shown in
Fig. 1). Compared with our DCLS, traditional constrained
least squares (CLS) deconvolution is applied to RGB space
and the smooth filter of CLS is fixed to be a Laplacian, given
by

P =

0 1 0
1 −4 1
0 1 0

 . (2)

Feature space deconvolution. Our paper (Table 5 in the
manuscript) has demonstrated that DCLS is better than CLS
as well as another traditional deblurring method Wiener de-
convolution in the RGB space.
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Figure 1. Architecture of the smooth filters predicting network.
Gy is the primitive feature with size of H × W × L, where L is
the number of channels. GAP denotes the global average pooling.

Effectiveness of reformulating degradation kernel. The
proposed DCLS is based on Eq. (1) that is derived from
classical degradation model with a high-resolution space
kernel kh. To illustrate the effectiveness of using Eq. (1),
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we provide an experiment of substituting kl with the prim-
itive kh in DCLS deconvolution and retrain that model on
anisotropic Gaussian kernels. The result is shown in Ta-
ble 1. Obviously, the high-resolution space kernel kh is
not compatible with the DCLS deconvolution module. Us-
ing reformulated kernel kl can obtain an improvement of
0.67dB in PSNR. We also show more examples of the re-
formulated kernels in Fig. 2.

Method PSNR SSIM

DCLS with kl 28.99 0.7964
DCLS with kh 28.32 0.7762

Table 1. Quantitative results of substituting low-resolution space
kernel kl with high-resolution space kernel kh in the DCLS de-
convolution.

II. Analysis of the Computational Cost

Since we incorporate the dynamic deep linear kernel
module which uses multi-layer filters and the dual-path
network which uses additional convolutions to process the
primitive features, the number of parameters of our method
is subsequently increased. As shown in Table 2. However,
we also find that adopting the dynamic deep linear kernel
allows us to handle blind SR without additional iteration,
thus our method requires fewer computational costs and
performs slightly faster.

Method #Params FLOPs Time

IKC [2] 5.29M 2178.72G 0.488s
DANv1 [5] 4.33M 926.72G 0.087s
DANv2 [6] 4.71M 918.12G 0.072s
DCLS 9.22M 368.15G 0.068s

Table 2. Comparison of model parameters, FLOPs, and inference
time. ‘#Params’ means number of parameters. The FLOPs are
calculated with input size of 270× 180.
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Figure 2. Visual examples of reformulated kernels. The top row and middle row are the LR images and the corresponding primitive kernels
from DIV2KRK. The bottom row is reformulated kernels.
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Figure 3. The PSNR performance of different methods on Gaussian8 datasets of scale factor 4. The kernel width σ are set from 1.8 to 3.2.
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Figure 4. Visual results of Img 33, Img 41, Img 44, Img52 from
noisy Urban100.

III. Additional Results
Gaussian8. We provide more visual comparison results
among the proposed DCLS and other state-of-the-art blind
SR methods, including ZSSR [7], CARN [1], IKC [2],
DANv2 [6] and AdaTarget [3], on Gaussian8 kernels, as
shown in Fig. 5 and Fig. 6. In addition, we give the results
of SR evaluation on different kernel widths as illustrated in
Fig. 3. These results demonstrate that our method achieves
the best performance on isotropic Gaussian kernels. Fig. 4
shows more results on noisy dataset, which further demon-
strate the superiority of our method.
DIV2KRK. We also provide more comparison results (in-
cluding ZSSR [7], IKC [2], DANv2 [6], AdaTarget [3] and
KOALAnet [4]) on DIV2KRK [2] to show the superiority
of the proposed method, as illustrated in Fig. 7 and Fig. 8.
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Figure 5. Visual comparison of different methods on Gaussian8 kernels for scale factor 4.
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Figure 6. Visual comparison of different methods on Gaussian8 kernels for scale factor 4.
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Figure 7. Visual comparison of different methods on DIV2KRK [2] dataset for scale factor 4.
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Figure 8. Visual comparison of different methods on DIV2KRK [2] dataset for scale factor 4.
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