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Proof of Theorem 2

Proof. We first prove (i). Assume that ranky, (X)) = r. Ac-
cording to Definition 3, we have rank(f(X)®) = r; < r
fori = 1,2, -- ,ns. Therefore, f(X)® can be factorized
as f(X)® = A;B;, where A; € R"*"i, B; € R X"
and they meet rank(A;) = rank(B;) = 7. Let A; =
[A;,0] € Rm*" and B; = [B;;0] € R"*"2, then we
have (X)) = A;B;. Let A = g(A) € R >7xns
and B = (E) R"*"2X73 be two tensors, where g( )

is the inverse DNN of f(-), A = A;, and B"
(¢=1,2,---,n3). Then, we can have
AxpB=g(f(AAf(B))
= g(f(9(A)Af(9(B)))
= g(AAB) ey
= 9(f(X))
=4X.
Since rank,(X) = r, there exists 7 € {1,2,---,n3}

such that rank(f(X)@)) = r holds. Thus, rank(A;) =
rank(B;) = r holds. According to Definition 3, we have
ranky, (A) = ranky (B) = r holds.

Then, we prove the property (ii). Assume that ) €
R71xn2xns gpd Z € R"2*™4 X" Then,

ranky, (Y *; Z)
=, max {rank(f(Y+; 2)")}
{rank((f(V)AF(2))™)}
LAk ()W F(2)D)) )
= i:ltgl?{,,bg{mm{rank(f(y)@), rank( f(2)®)}}
< _max {rank(f(V))} = rank, ().

i=1,2,

= max
1=1,2,-- ,n3

= max
1=1,2,-
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Similarly, we can have rank, (Y *; Z) < rank,(Z2).
Thus, the following inequality holds: ranky (Y *; Z) <
min{ranky, ()), rank,(Z)}. O

Proof of Lemma 2

Proof. Assume that L(X,0) = ||(X —0)gql|%, where X =
g(AAB). Here, we use X(i,j, k) or Xiji to denote the
i, j, k-th element of X.

We first prove (i). Suppose that (i, b, ¢) ¢ € for arbitrary
b, c. Then for arbitrary v, w, the gradient of L on the ¢, v, w-
th element of A is

AL(X,0)
DA(i, v, w)
_ Z ( (A B))abc
AM»abc DA(i, v, w) )
S A(g(AAB))abe
= Y 2(g(ABE) — 0) ) LIALE et
(b e OA(i, v, w)
Note that
(9(AAB))abe = Z Hy,, o (Z Hy_1;,,
Ji=1 Jj2=1
ns “4)
Z H17k 17k ZAG'SJKBSZ’]IC
Jr=1

Therefore, for arbitrary a such that a # i, we have

O(9(ALB))abe

= = 0. 5
OA(i,v,w) ©)



Thus,

w = > 2((g(ALB) = O)ine)
OA(i, v, w) (bR ©)
afl(i,v,w) .

Since (i, b, ¢) ¢ 2 for arbitrary b, ¢, we have

M:o,v:m,m ,ryw=12--- n3. (7)
OA(t, v, w)

Then, we prove (ii). Suppose that (a,i,c) ¢ € for arbi-
trary a, c. Then for arbitrary u, w, the gradient of L on the
u, 1, w-th element of B is

OLX0) _ 3 2((9(AAB) — O)ae)

OB (u, i, w) (@b)eq ®)
(g(ALB))ave
OB(u,i,w)

According to Eq. (4), for arbitrary b such that b # i, we
have

% — O (9)
OB (u,i,w)
Thus,
OL(X,0 S
A(i-) = Z 2((9("4AB) - O)aic)
0B (u,i,w) (aies
R (10)
OB (u, i, w)
Since (a, i, ¢) ¢ Q2 for arbitrary a, ¢, we have
w :O,U: 172’... ST, W = 172’... ,N3.
OB (u,i,w)
(11

Then, we prove (iii). Suppose that (a,b,7) ¢  for ar-
bitrary a,b. Then for arbitrary v, the gradient of L on the
i, v-th element of Hy, is

OLY.0) _ S~ 9((g(ALB) - O)u)
OHL(i, v) (a,b,c)€Q (12)
A9(ALB))ave
oHy(i,v)

According to Eq. (4), for arbitrary ¢ such that ¢ # i, we
have o
9(g(AAB))abe

oH,(i,v) 0- (13)

Thus,
OL(X,0) .
— L = 2((g(AALB) — O)api
OHy(i,v) (mg):eg ((g( ) )abi) e
A(g(ALB))avi
OHy(i,v)
Since (a, b, ) ¢ 2 for arbitrary a, b, we have
OL(X,0) _
m—o,’l]—l,27 e ,Nn3. (15)
O

Proof of Theorem 3

Proof. Suppose that X = g(AAB). Since o 1(-) is
the inverse function of the LeakyReLU function [3], we
have 0=1(0) = 0. Since o~ *(-) is Lipschitz continuous,
there exists P > 0 such that |[[c=1(A)|ls, = o7 (A) —
o= 1(0)|l¢, < P||A - 0lls, = P||A¢, holds for arbitrary
A. Then
V2],
=X 1im1—1,15) = X2ema ) 12
=|lo71(--- 0_1(0_1((A(1:n1,17:7:)ﬁl§) x3 Hy)X3
Hy) - x3Hp 1) xsHy —o (-0 o 1((
Aginy ) AB) x3 Hy) x3 Ha) -+ x5 Hy_1) x3 Hy|lo,
<[le™*(: "U_l(U_l((A(l:nl—l,:,:)AB) x3 Hyp)x3
Hy) - x3Hp 1) —o (- 0_1(0_1((fl(2:n1’:1:)A
B) x3 Hy) x3 Ha) -+ x3 Hy 1), [Hille,
<Pllo7 (07 (0T (Aqrimy 1) AB) x3 Hy) x3
Hy) - xsHg_o) xsHi1 — 0'_1(' . 0_1(0_1((
Afginy ) AB) x3 Hy) x3 Ha) -+ x3 Hy_o) x3
Hy_1|e, [Hglle,
<PMUHL e [1Ha e, - - Bk le [ (Aqin, -1, A8)—
(A@ing, . OB,
<P H e |[Hale, - [kl IBlle [ Aun, —1.09—

-A(Q:nl,:,:)”ll
=P [ Hule, [Halle, - [Hklle, [1Blle, [ VoAl -
(16)
Since {H,}}_, and B are bounded, we have
IVaolle, < K1V Al (17)

where Ji = P*Y[Hyllg, [[Halle, - | Helle, [ Blle, is a
constant.
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Figure 1. Tensor completion results vs. v and r (Pavia, SR=0.1).
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Similar to (16), we have

IVyXlle, < P*7H ey | Halle, - - [Hklle, [|Alle, 1V, B]le,

= J2||Vy8||£17
(18)

where Jo = P*U[Hule [ Halle - [Hilley | Alle, is a
constant.
Next, we prove the third inequality. Since

VX,

:HX(:,:,lzng.—l) - X(:,:,z:n3)||z1

—lo (-0 (o ((AAB) x5 Hy) x5 Hy) - x5
Hy_1) x5 Hi(ingo1,) — 0 (o (o ((AA
B) x5 Hy) x3 Ha) -+ x3 Hy_1) X3 Hyp (. lley

<o o7 (0T H(AAB) x3 Hy) x3 Hy) - - - X3
Hi— 1)l [Hi(1ins—1,) = Hi@ingo llex

<P* Y| Alle, 1Bley | H [y | Halle, - - [Hi—alle, [IVoHe e

(19)

we have
IV2Xley < J5[ Vol (20)
where J5 = P* | Alle, | Blle, [ H e, [Halle, - [ Hi1 e,
is a constant. The proof is completed. O

Implementation Details

In this work, all experiments are conducted on the Py-
Torch and MATLAB 2019a platform with an i5-9400f CPU,
an RTX 3060 GPU, and 16GB RAM. As for the proposed
method, we set the number of network layers £ as 2 in the
experiments. The rank r and the trade-off parameter v are
tuned based on the highest PSNR value. The hyperparame-
ters of compared methods are tuned to obtain the highest
PSNR value. For CNN-based methods, we use the pre-
trained model provided by the authors.

In this work, we consider the simple fully connected
network. In future work, we can consider some advanced
DNNs (e.g., attention) in our framework.

The limitation of our method lies in the manual selection
of the hyperparameters, i.e., the rank 7 and the trade-off pa-
rameter . In experiments, we select these parameters to
obtain the best PSNR value. Numerical tests in Fig. 1 show
that our method is relatively insensitive to the choice of r
and . Thus, it is not difficult to choose these hyperparam-
eters in experiments.

More Experimental Results

Please see Figs. 3-7 for more visual results. Our method
shows advantageous performance against compared state-
of-the-art methods for different tasks. Moreover, in Fig. 2,
we show the visualizations of the learned matrices H; and
H,, for HSIs WDC mall and Pavia with SR=0.1. Compared
with the fixed DFT matrix, our learned nonlinear transform
is more flexible to represent different data.

|

0.2 04 0.6 0.8 1

DFT matrix H;

Figure 2. Given different data (e.g., the HSI WDC mall and Pavia),
traditional t-SVD methods [6,21] use fixed DFT matrix for multi-
dimensional image recovery. In constrast, our DeepLRTF flexibly
learns different nonlinear transforms (see the learned matrices H
and H) for different data to help obtain better performance.
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Figure 3. The results of multi-dimensional image completion by different methods on HSI WDC mall, HSI Pavia, video Backdoor, and
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Figure 4. The results of MSI denoising by different methods on HSI WDC mall, HSI Pavia, MSI Balloons, and MSI Fruits for Case 1.
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Figure 5. The results of MSI denoising by different methods on MSIs Balloons, Fruits, Pool, and Doll for Case 2.
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Figure 6. The results of snapshot spectral imaging by different methods on HSI WDC mall (SR = 0.5), HSI Pavia (SR = 0.5), MSI Toy (SR
=0.5), and MSI Flowers (SR = 0.3).
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Figure 7. The results of multi-dimensional image completion by different methods on WDC mall with horizontal/lateral slice missing and
frontal slice missing.
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