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A. Model Architecture And Training Details
In this section, we provide the details of our model and

training process on EMNIST [1], FashionMNIST [9], CI-
FAR10 [4] and CIFAR100 [4].

A.1. Model Architecture

Figure 1 shows the model structure of the hypernetwork
used in our paper. First, the hypernetwork uses an embed-
ding layer to generate and update the embedding vector vi.
Then, the embedding vector vi passes through several pub-
lic fully connected layers and generates an intermediate fea-
ture. Finally, the intermediate feature is sent to n fully con-
nected layers which correspond to n layers of local clients’
models. These final fully connected layers output the ag-
gregation weights for each layer of client i respectively.

Figure 1. The model structure of the hypernetwork for client i

A.2. Training Details

In all experiments, we use SGD optimizer and cross-
entropy loss, the learning rate is 0.01 for CIFAR10 and CI-
FAR100 while 0.005 for EMNIST and FashionMNIST, the
batch size is 32. The local epochs is 20 for 100 clients case
and 10 for 10 clients case. In the comparison experiments
with state-of-the-art baselines, we set 600 communication
rounds for 10 clients case and 2500 communication rounds
for 100 clients case, the participation ratio is 100% and 10%
respectively. For pFedMe, we set the personal learning rate
as 0.01, β as 1 and λ as 15. For FedFomo, the number of
local models that the server sends to one client in each com-
munication round is 5.

B. Additional Results
In this section, we provide more extensive experimen-

tal results to compare the training performance of pFedLA

and HeurpFedLA with Local Training, FedAvg [6], Per-
FedAvg [3], pFedMe [8], pFedHN [7], FedBN [5], Fe-
dRep [2], FedFomo [10]. Besides, we present additional
work on key hyperparameters of pFedLA to give further in-
sight into our method’s functionality and efficiency to pa-
rameters. We consider the effect of partial aggregation on
training performance of pFedLA.

B.1. The Training Performance on Different non-
IID Settings

We compare pFedLA with state-of-the-art baselines on
four datasets: EMNIST, FashionMNIST, CIFAR10 and CI-
FAR100. There are two non-IID data settings: 1) each client
is randomly assigned four classes (twelve classes per client
in CIFAR100) with the same amount of data on each class;
2) each client contains all classes, while the data on each
class is not uniformly distributed. Figure 2, 3, 4, 5 shows the
empirical convergence results of pFedLA along with other
baselines. Specifically, we focus on the changes of average
test accuracy of these algorithms in each communication
round. It is obvious that pFedLA converges to higher av-
erage test accuracy on all four datasets than baselines. This
phenomenon validate the effectiveness of the parameterized
layer-wised model aggregation on pFL training.

B.2. Effect of Partial Aggregation

To address the unreliable communication and compu-
tation environment challenges in personalized federated
learning, we conduct experiments to explore the effect of
partial aggregation on training performance of pFedLA.
Specifically, in large-scale FL system, we only aggregate
M (M � N ) clients with the largest weight in each com-
munication round. Table 1 shows the final model accuracy
for different values ofM . The total number of clients is 100
and the participation ratio is 10%. It can be noticed that a
proper M can achieve better performance, which demon-
strates that the value of M should be carefully designed.

Dataset
# Value of M

4 5 7 9

CIFAR10 (%) 72.23 73.15 74.27 71.46
EMNIST (%) 95.25 96.34 93.99 92.90

Table 1. The Model Accuracy under Different setting of M .

B.3. Visualization of the Aggregation Weight

In section 4.3, we have discussed the relationship be-
tween the aggregation weights and the data similarities
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(a) EMNIST
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(b) FashionMNIST
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(c) CIFAR10
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(d) CIFAR100

Figure 2. Performance of pFedLA compared with baselines for 10 clients case on different datasets, non-IID 1.
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(a) EMNIST
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(c) CIFAR10
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Figure 3. Performance of pFedLA compared with baselines for 100 clients case on different datasets, non-IID 1.

among clients. Figure 4 (in main paper) shows the visu-
alization of the aggregation weights in FC1 layer on EM-
NIST and FashionMNIST, FC3 layer on CIFAR10 and CI-
FAR100. We additionally report heatmap on other layers
in Figure 6. The experimental setup is consistent with that
in the main paper. It can be noticed that the self-weights
of each client still have the highest values. The weights
among close clients with consecutive IDs are still larger
than those of the distant clients. These results further verify
that pFedLA can exploit the inter-similarities among het-
erogeneous clients.

C. Analysis of Additional FLOPs of pFedLA

In pFedLA, each client maintains a hypernetwork to pro-
duce the personalized aggregation weights. The training of
the hypernetworks may bring additional computation over-
head. Table 2 shows the FLOPs of the model on a client
and a hypernetwork on the server. When compared with a
hypernetwork, the forward propagation on the client is even
larger. What’s more, it is just the computation needed for
one pass on one sample. In each communication round,
the client models have to train several local steps on the
whole private data samples, while a hypernetwork only
needs to calculate the aggregation weights once in each
round. Therefore, the additional computation of pFedLA
is acceptable.
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(a) EMNIST
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(b) FashionMNIST
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(c) CIFAR10
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(d) CIFAR100

Figure 4. Performance of pFedLA compared with baselines for 10 clients case on different datasets, non-IID 2.
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(c) CIFAR10
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(d) CIFAR100

Figure 5. Performance of pFedLA compared with baselines for 100 clients case on different datasets, non-IID 2.
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(a) EMNIST (FC3)
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(b) FashionMNIST (FC3)
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(c) CIFAR10 (FC1)
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(d) CIFAR100 (FC1)
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(e) EMNIST (Conv1)
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(f) FashionMNIST (Conv1)
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(g) CIFAR10 (Conv2)
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Figure 6. The visualization of the aggregation weights in a specific layer on EMNIST, FashionMNIST, CIFAR10 and CIFAR100. X-
axisand y-axis show the IDs of clients.

Model
Dataset

EMNIST FashionMNIST CIFAR10 CIFAR100

Client Model 2266.45K 2266.45K 4749.90K 4765.02K
Hypernetwork 101.23K 101.23K 117.29K 117.29K

Table 2. FLOPs of the client model and hypernetwork.


