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1. Network
We learn both of SDFs and On-surface Decision Func-

tions (ODF) using the same network released by NeuralPul-
l [3]. During testing, we learn SDFs fθ from a sparse point
cloud. In addition, we use the method introduced in Neu-
ralPull [3] to sample queries around each point on the sparse
point cloud.

2. Surface Reconstruction
We present more visual comparison in surface recon-

struction in Fig. 1. With 100 points/m2 as input, our method
can reconstruct surfaces with more geometry details than
the state-of-the-art methods.

We also demonstrate our advantage in surface recon-
structions from a large scale real scanning in our video.

3. Effect of Point Density
We highlight our advantages by visually comparing sur-

face reconstructions from point clouds with different point
densities. Current state-of-the-art methods, such as COc-
c [5], IMLS [2], LIG [1], may reconstruct smooth surfaces
with high point densities, such as 4000 and 3000 points.
However, their performance significantly degenerates when
there are much fewer points. With on-surface prior, our
method can reconstruct surfaces in high accuracy from s-
parse point clouds.

4. More Analysis
Comparison with NeuralPull Variations. We report nu-
merical comparisons with NeuralPull (NP) [3] in our paper.
Here, we report more numerical comparison with NP vari-
ations under the same dataset we used in ablation studies.
One strategy to make NP work with sparse point clouds is
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Figure 3. Visualization of reconstruction from extremely irregular
point clouds.

to pull each query to its K nearest neighbors on the sparse
point cloud, and K > 1, rather than the nearest one. We
can pull a query to the plane formed by 3 nearest neighbors,
or the center of the 3 nearest neighbors, or the center of the
5 nearest neighbors. As shown in Tab. 1, our method also
significantly outperforms these variations.

Eiknal Loss. We did not observe improvements by the Eik-
nal Loss [4] which constrains the normal of gradients to be
one, as shown by “Eiknal” in Tab. 1.

Irregular Points. All sparse points that we used are irreg-
ular and randomly sampled. We also evaluate our perfor-
mance under extreme irregular cases that were manually
generated in Fig. 3. We can see that our method can still
handle extremely irregular points well.

1



Input COcc LIG NP Ours GT

(a)

(b)

Figure 1. Visual comparison with COcc [5], LIG [1], NP [3] under SceneNet.
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Figure 2. Effect of Point Density on performance of the state-of-the-art methods.

5. Implementation
Code and data are available at https://github.

com/mabaorui/OnSurfacePrior.

References
[1] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang,

Matthias Nießner, and Thomas Funkhouser. Local implicit
grid representations for 3D scenes. In IEEE Conference on
Computer Vision and Pattern Recognition, 2020. 1, 2

[2] Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Pengshuai Wang, Xin
Tong, and Yang Liu. Deep implicit moving least-squares func-
tions for 3D reconstruction. In IEEE Conference on Computer
Vision and Pattern Recognition, 2021. 1

[3] Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias Zwick-
er. Neural-pull: Learning signed distance functions from point

clouds by learning to pull space onto surfaces. In Internation-
al Conference on Machine Learning, 2021. 1, 2

[4] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman,
David B. Lindell, and Gordon Wetzstein. Implicit neural rep-
resentations with periodic activation functions. In Advances
in Neural Information Processing Systems, 2020. 1

[5] Lars Mescheder Marc Pollefeys Andreas Geiger Songy-
ou Peng, Michael Niemeyer. Convolutional occupancy net-
works. In European Conference on Computer Vision, 2020.
1, 2



λ 0 Ours(0.4) NP NP 3NN plane NP 3NN center NP 5NN center Eiknal
L1CD 0.050 0.015 0.055 0.058 0.052 0.060 0.017

NC 0.569 0.928 0.554 0.548 0.588 0.574 0.901
Table 1. More analysis.


