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In this document, we supply some details and experi-
ments of our proposed SCI. We first provide an elaborated
exploration for the architecture Kϑ. And then, we make the
analysis of the weighting parameters in the loss function.
Besides, more visual results for different tasks are also pro-
vided to further indicate our superiority.

1. Exploring Architecture of Self-Calibrated
Module

Fig. 1 showed the visual results of different settings for
self-calibrated module Kϑ. We can easily see that our
method always generated stable outputs no matter how the
number of convolutions. Thus we can actually use the
lightweight enough architecture to instantiate it. More im-
portantly, the self-calibrated module is just adopted in the
training phase. This is to say, the architecture for Kϑ will
be not appeared during the inference.

2. Analyzing Parameters in Loss
Here we considered some cases of different settings for

weighting parameters in the loss function. As demonstrated
in Fig. 2, we can observe that the exposure level became
higher along with the increase of α. But when α = 2,
the color appears the deviation that tends to present white.
When increasing the β, the exposure level became low. By
comparison, we set α = 1, β = 1 as our default setting in
our all experiments.

3. More Visual Results
3.1. Low-Light Image Enhancement

As shown in Fig. 3-4, we demonstrated visual results
of different learning-based methods including DRBN [9],
KinD [12], EnGAN [4], SSIENet [11], ZeroDCE [2], and
RUAS [5]. We can easily see that our method consistently
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performed superiority over other state-of-the-art methods in
different scenes.

3.2. Dark Face Detection

Fig 5 showed the visual comparison among differen-
t methods on the DARK FACE dataset [10]. We can eas-
ily see that our method can detect more targets, but other
methods cannot do it.

3.3. Nighttime Semantic Segmentation

In Fig. 6, we provided more visual comparison of night-
time semantic segmentation among different methods. Ob-
viously, it can be observed that the results of our methods
can accurately segment more areas than others.
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Figure 1. Visual results of different settings for Kϑ.

Input α = 0.1, β = 1 α = 0.5, β = 1 α = 1, β = 1 α = 2, β = 1 α = 1, β = 5

Figure 2. Visual results of different settings for weighting parameters in loss functions.
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Figure 3. Visual results of state-of-the-art methods and our method on benchmarks. Top and bottom rows are results on the MIT-Adobe
5K [1] and LSRW [3] datasets, respectively.
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Figure 4. Visual results of state-of-the-art methods and our method on real-world scenarios. Top three and bottom five rows are results on
the ExDark [6] and UFDD [7] datasets, respectively.
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Figure 5. Visual results of dark face detection on the DARK FACE dataset [10]. Red box indicates the obvious differences.
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Figure 6. Visual results of semantic segmentation on the ACDC dataset [8]. Red box indicates the obvious differences.


