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We present some basic notions from algebraic geometry,
proofs, examples of constructing elimination templates, nu-
merical details, and additional experiments demonstrating
the numerical stability.

7. Monomial orderings
A monomial ordering > on [X] is a total ordering sat-

isfying (i) p > 0 for all p ∈ [X] and (ii) if p > q, then
p s > q s for all p, q, s ∈ [X]. We are particularly interested
in the following two orderings:

1. graded reverse lex ordering (grevlex) compares mono-
mials first by their total degree, and breaks ties by
smallest degree in xk, xk−1, etc.

2. weighted-degree ordering w.r.t. a weight vector w ∈
Rk

+ compares monomials first by their weighted de-
gree (the dot product of w with the exponent vector[
α1 . . . αk

]⊤
), and breaks ties by reverse lexico-

graphic order as in grevlex.

8. Proof of Theorem 1
The following theorem is not a new result of this work. It

is “folclore” in algebraic geometry and has been used, e.g.,
in [9,33,36], but we could not find it formulated clearly and
concisely in the literature. Thus, we present it here for the
sake of completeness.

Theorem 1. The elimination template is well defined, i.e.,
for any s-tuple of polynomials F = (f1, . . . , fs) such that
ideal ⟨F ⟩ is zero-dimensional, there exists a set of shifts
A · F satisfying both conditions from Definition 1.

Proof. Let us first show that there is a set of polynomials A
such that all reducible monomials R appear in the support
of A · F . Let G = {g1, . . . , gl} be a reduced Gröbner basis
of the zero-dimensional ideal J = ⟨F ⟩ and let LM(G) be the

set of its leading monomials, with ⟨LM(G)⟩ = ⟨LM(J)⟩ [13,
p. 78 Definition 5]. Let B be the set of standard monomials
representing a linear basis B of the quotient ring K[X]/J
for G. Then, for every reducible monomial r ∈ R = {a b :
b ∈ B} \ B for B and any a ∈ K[X], there holds true
r ∈ ⟨LM(G)⟩, because r is a multiple of some b ∈ B but r
is not an element of B. The set B of the standard monomi-
als is finite [13, p. 251 Theorem 6]. Thus, R is finite too,
and we can write R = {r1, . . . , rn}. For every k ∈ N,
k ≤ n, we can write rk = mk1g1 + . . . + mklgl + pk,
where mki ∈ K[X], deg(rk) ≥ deg(mkigi) for every
i ∈ {1, . . . , l}, and pk ∈ K[X] is the polynomial satisfy-
ing rk

G = pk = pk
G [13, p. 64 Theorem 3]. Moreover,

for every i ∈ {1, . . . , l}, there exists qij ∈ K[X] such that
gi ∈ G can be written as gi =

∑
j qijfj . We can write

rk =
∑

i

∑
j mkiqijfj + pk. Let {mkiqij} ∈ Aj for all

i ∈ {1, . . . , l}, j ∈ {1, . . . , s}, k ∈ {1, . . . , n}. Then, the
Macaulay matrix M(A ·F ) has a non-zero element in every
column corresponding to a monomial from R.

Let us next show that the eliminated matrix M̃(A · F )
contains a pivot in every column corresponding to a mono-
mial from R. Denote by P̃ the set of polynomials P̃ =

M̃(A · F ) · [X]A·F . For a set S denote hull(S) the linear
space over K spanned by the elements of S, i.e. hull(S) =
{
∑

j cjsj : sj ∈ S, cj ∈ K}.

Suppose {mkiqij} ∈ Aj for all i ∈ {1, . . . , l}, j ∈
{1, . . . , s}, k ∈ {1, . . . , n}. For every k we have rk =∑

i

∑
j mkiqijfj + pk, hence rk − pk ∈ hull(A · F ) =

hull(P̃ ). The polynomial pk is a linear combination of
elements from B, thus the polynomial rk − pk contains
only one reducible monomial rk and no excessive mono-
mials. Since M̃(A · F ) is in the reduced row echelon form,
there is a row in M̃(A · F ) corresponding to the polyno-
mial rk − pk ∈ hull(P̃ ) with zero coefficients at all exces-
sive monomials and all reducible monomials except for rk.
Hence, there is a pivot in every column of M̃(A · F ) corre-
sponding to a reducible monomial. It follows that M̃(A ·F )
must have the form (2) meaning that M(A · F ) is the elim-
ination template.



9. Examples

In this section, we provide several examples of construct-
ing elimination templates and using them to compute solu-
tions of polynomial systems.

Example 1. In the first example we demonstrate th con-
struction of the elimination template for a set of two poly-
nomials in Q[x, y]. We derive the action matrix and show
how to extract the solution of the system from the action
matrix.

Let J = ⟨F ⟩, where F = {f1, f2} = {x2+y2−1, x2+
xy + y2 − 1} ⊂ Q[x, y]. The Gröbner basis of J w.r.t.
grevlex with x > y is G = {xy, x2 + y2 − 1, y3 − y}. The
standard basis of Q[x, y]/J is B = {y2, y, x, 1}. If x is the
action variable, then the action matrix is

Tx =


0 0 0 0
0 0 0 0
−1 0 0 1
0 0 1 0

 .

Let us construct vector V define in Eq. (5):

V = xv(B)− Txv(B) =


xy2

x2 + y2 − 1
xy
0

 .

Since V ⊂ J , see Sec. 3, there exists matrix H0 such that
V = H0v(F ). By tracing the computation of the Gröbner
basis G we found

H0 =


−y y
1 0
−1 1
0 0

 .

It follows that it is enough to take the set of shifts A ·
F = {yf2, yf1, f2, f1}. We divide the set of monomials
[X]A·F into the subsets B = B ∩ [X]A·F = {y2, y, 1},
R = {xy2, xy, x2} and E = {x2y, y3}. This yields the
elimination template

M(A · F ) =
[
ME MR MB

]

=


x2y y3 xy2 xy x2 y2 y 1

yf2 1 1 1 0 0 0 −1 0
yf1 1 1 0 0 0 0 −1 0
f2 0 0 0 1 1 1 0 −1
f1 0 0 0 0 1 1 0 −1

.
The reduced row echelon form of M(A · F ) has the form

M̃(A · F ) =

[
M̃E 0 ∗
0 I M̃B

]

=


1 1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 −1

 .

Then the action matrix Tx is read off as
[
−M̃B
P

]
, where

P =
[
0 0 1 0

]
satisfies x = Pv(B).

The eigenvalues of Tx, i.e. {0,±1}, where the geomet-
ric multiplicity of the eigenvalue λ = 0 equals 2, i.e.
the eigen-space associated with λ = 0 is 2-dimensional.
Hence, the x-components of the roots are 0, 0,−1, 1. The
y-components can be derived from the eigenvectors result-
ing in the following roots: {(0,−1), (0, 1), (−1, 0), (1, 0)}.

Example 2. In this example we demonstrate the usage of
non-standard bases of the quotient space. Having an action
matrix related to the standard basis B̂, we can construct the
action matrix related to a non-standard basis B by a change-
of-basis matrix. Another option is to construct a set of shifts
and divide its monomials so that the basis monomials are
the ones from the non-standard basis B. The action matrix
derived from the resulting elimination template is the action
matrix related to B.

Let J = ⟨F ⟩, where F = {f1, f2} = {x3 + y2 − 1, x−
y−1} ⊂ Q[x, y]. The Gröbner basis of J w.r.t. grevlex with
x > y is G = {x−y−1, y3+4y2+3y}. The standard basis
of Q[x, y]/J is B̂ = {1, y, y2}. If x is the action variable,
then the related action matrix is

T̂x =

1 1 0
0 1 1
0 −3 −3

 .

Now let us consider the non-standard basis B =
{x2, y, 1}. The respective change-of-basis matrix S, i.e. a

matrix satisfying v(B)
G
= S v(B̂), has the form

S =

1 2 1
0 1 0
1 0 0

 .

Then the matrix of the action operator in the basis B is

Tx = S T̂xS
−1 =

−1 2 2
1 −1 −1
0 1 1

 .

The vector V define in Eq. (5) has the form

V = xv(B)− Txv(B) =

 x3 + x2 − 2y − 2
−x2 + xy + y + 1

x− y − 1

 .



Since V ⊂ J , see Sec. 3, there exists matrix H0 such that
V = H0v(F ). By tracing the computation of the Gröbner
basis G we found

H0 =

1 x+ y + 1
0 −x− 1
0 1

 .

It follows that it is enough to take the set of shifts A · F =
{xf2, yf2, f2, f1}. We divide the set of monomials [X]A·F
into the subsets B = B = {x2, y, 1}, R = {x3, xy, x} and
E = {y2}. This yields the elimination template

M(A · F ) =
[
ME MR MB

]

=


y2 x3 xy x x2 y 1

xf2 0 0 −1 −1 1 0 0
yf2 −1 0 1 0 0 −1 0
f2 0 0 0 1 0 −1 −1
f1 1 1 0 0 0 0 −1

.
The reduced row echelon form of M(A · F ) is as follows

M̃(A · F ) =

[
M̃E 0 ∗
0 I M̃B

]

=


1 0 0 0 −1 2 1
0 1 0 0 1 −2 −2
0 0 1 0 −1 1 1
0 0 0 1 0 −1 −1

 .

Then the action matrix Tx is exactly −M̃B. The eigenvalues
of Tx, i.e. {−2, 0, 1}, give us the x-components of the roots.
The y-components can be derived from the eigenvectors,
which are  4

−3
1

 ,

 0
−1
1

 ,

10
1

 .

Hence, we get the roots {(−2,−3), (0,−1), (1, 0)}.

Example 3. In this example we consider a set of polynomi-
als with the same structure as in Example 2 but with differ-
ent coefficients. We use the same elimination template as
in the previous example and just plug in the corresponding
coefficient. Then we derive the action matrix. We again use
the non-standard basis B = {x2, y, 1}.

Let F = {f1, f2} = {x3 −
√
2y2 − 3, x−

√
3y + 4} ⊂

R[x, y].
We can use the same set of shifts A · F =

{xf2, yf2, f2, f1} to construct the elimination template

M(A·F ) =


y2 x3 xy x x2 y 1

0 0 −
√
3 4 1 0 0

−
√
3 0 1 0 0 4 0

0 0 0 1 0 −
√
3 −1√

2 1 0 0 0 0 −3

.

Finding the reduced row echelon form of M(A · F ) results
in the following action matrix:

Tx =


√
2
3

8
√
6

3 − 16
√
2

3 − 3

−
√
3
3 −4 16

√
3

3

0 −
√
3 4

 .

Finally, from the eigenvectors of Tx we derive the roots
of F = 0: {(2.955, 4.015), (−1.242 + 1.423i, 1.592 +
0.822i), (−1.242− 1.423i, 1.592− 0.822i)}.

Example 4. In this example we consider a non-radical
ideal. We use the standard basis B. It is enough to use a
set of shifts such that not all the monomials from B are in-
cluded. One can then add zero columns to the elimination
template. To get the full action matrix, we need to add the
permutation matrix from Eq.(4) to the matrix obtained from
the elimination template. Then we derive roots of the sys-
tem from the action matrix and its eigenvectors.

Let J = ⟨F ⟩, where F = {f1, f2} = {x2 − y2, y2 −
x} ⊂ Q[x, y]. The reduced Gröbner basis w.r.t. grevlex
with x > y is G = {y2 − x, x2 − x} and the standard basis
of Q[x, y]/J is B = {xy, x, y, 1}.

If y is the action variable, then the action matrix is

Ty =


0 0 1 0
0 0 1 0
1 0 0 0
0 1 0 0

 .

Let us construct vector V define in Eq. (5):

V = yv(B)− Tyv(B) =


xy2 − x
y2 − x

0
0

 .

Since V ⊂ J , see Sec. 3, there exists matrix H0 such that
V = H0v(F ). By tracing the computation of the Gröbner
basis G we found

H0 =


1 x+ 1
0 1
0 0
0 0

 .

It follows that it is enough to take the set of shifts A · F =
{xf2, f2, f1}. We divide the set of monomials [X]A·F into
the subsets B = B ∩ [X]A·F = {x}, R = {xy2, y2} and
E = {x2}. This yields the elimination template

M(A · F ) =
[
ME MR MB

]

=


x2 xy2 y2 x

xf2 −1 1 0 0
f2 0 0 1 −1
f1 1 0 −1 0

.



The reduced row echelon form of M(A · F ) is the matrix

M̃(A · F ) =

[
M̃E 0 ∗
0 I M̃B

]
=

 1 0 0 −1
0 1 0 −1
0 0 1 −1

 .

We can add zero columns corresponding to the basic mono-
mials from B\B = {xy, y, 1} to the matrix M̃(A ·F ). This
yields[

M̃E 0 ∗
0 I M̃B

]
=

 1 0 0 0 0 −1 0
0 1 0 0 0 −1 0
0 0 1 0 0 −1 0

 .

Then the action matrix Ty is read off as
[
−M̃B
P

]
, where

P =

[
1 0 0 0
0 1 0 0

]
satisfies

[
xy
x

]
= Pv(B).

The eigenvalues of Ty are {0,±1}. The geometric
multiplicity of the eigenvalue λ = 0 equals 1, whereas
its algebraic multiplicity is 2 implying that Ty is non-
diagonalizable. The y-components of the roots are 0,−1, 1.
The x-components can be derived from the eigenvectors
resulting in the following roots: {(0, 0), (1,−1), (1, 1)},
where the root (0, 0) is of multiplicity 2.

10. Proof of Proposition 1
The following proposition validates the Schur comple-

ment reduction described in Subsec. 4.2.

Proposition 1. Let M be an elimination template repre-
sented in the following block form

M =

[
A B
C D

]
, (9)

where A is a square invertible matrix and its columns cor-
respond to some excessive monomials. Then the Schur com-
plement of A, i.e. matrix M/A = D−CA−1B, is an elim-
ination template too.

Proof. Recall that an elimination template is partitioned as
M =

[
ME MR MB

]
, where E , R and B are the sets of

excessive, reducible and basic monomials respectively. By
the definition of template, the reduced row echelon form of
M must have the form

M̃ =

M̃E 0 ∗
0 I M̃B
0 0 0

 ,

where
[
M̃E
0

]
is the reduced row echelon form of matrix

ME . On the other hand, according to the block form (8),

we have M̃ =

[
Ã B̃

C̃ D̃

]
, where Ã is a square invertible

submatrix of M̃E . Thus, Ã = I and C̃ = 0. Let EA be the
set of excessive monomials corresponding to the columns

of matrix A. Then we have M̃E =

[
I ∗
0 M̃E\EA

]
. It follows

that the reduced row echelon form of M/A is

M̃/A = D̃ =

M̃E\EA
0 ∗

0 I M̃B
0 0 0


and hence M/A is a template.

11. Proof of Proposition 2

Here we prove a simple necessary condition for a tem-
plate to be minimal.

Proposition 2. Let M ′′ be an elimination template of size
s′′ × n′′ whose columns arranged w.r.t. the partition E ∪
R∪B. Then there exists a template M of size s× n so that
s ≤ s′′, n ≤ n′′ and n− s = #B.

Proof. Let M ′′ be an elimination template of size s′′ × n′′.
First, we take a maximal subset of independent rows of M ′′

to get template M ′ of size s× n′ with s ≤ s′.
Let M ′ be partitioned as follows

M ′ =
[
M ′

E M ′
R M ′

B

]
.

As M ′ is an elimination template, its reduced row echelon
form must be as follows

M̃ ′ =

[
M̃ ′

E 0 ∗
0 I ∗

]
,

where I is the identity matrix of order #R. Removing the
columns from M ′

E that do not have pivots in M̃ ′
E results in

matrix M of size m × n, where n − s = #B. Clearly,
matrix M is also an elimination template as its reduced row
echelon form is given by

M̃ =

[
I 0 ∗
0 I ∗

]
.

Since the columns from M ′
E that do not have pivots in M̃ ′

E
do not change the reduced row echelon form of the rest of
the matrix, it follows that the right most #B columns in M̃

are exactly the same as in M̃ ′.



Problem # 3 (nstd) 9 (std) 10 (std) 15 (std) 16 (std)

Error distrib.

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

Template size 11×26 76×100 55×74 57×73 65×85
#P 15 39 30 54 35

Med. error 3.30e–13 8.08e–11 4.19e–13 1.04e–12 3.41e–13
Ave. time (ms) 0.4 1.2 3.1 1.0 0.9

Problem # 17 (nstd) 20 (std) 21 (std) 22 (nstd) 23 (std)

Error distrib.

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

Template size 139×155 139×163 99×119 31×47 18×28
#P 40 68 48 20 10

Med. error 5.52e–12 4.67e–11 7.95e–13 1.71e–13 3.06e–13
Ave. time (ms) 2.5 3.6 2.0 0.5 0.9

Problem # 28 (std) 29 (std) 31 (std) 32 (std) 33 (std)

Error distrib.

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

Template size 120×140 134×162 217×248 126×162 209×277
#P 80 76 85 67 117

Med. error 6.11e–13 1.63e–12 1.31e–12 2.09e–11 3.77e–08
Ave. time (ms) 2.6 3.7 4.2 2.3 8.5

Table 3. Tests of numerical accuracy and runtime for some our minimal solvers from Tab. 1 and Tab. 2 of the main paper. Each histogram
shows log10 of numerical error distribution on 104 trials. It is also shown the template size of each problem and the number of permissible
monomials (#P) used for the column pivoting strategy from [11], see Sec. 12. For problems #3 and #23 the column pivoting was not
applied as for those problems P is exactly the set of basic monomials. The runtime includes both constructing the coefficient matrix of the
initial system and finding its solutions.

12. Notes on column pivoting

In Subsect. 2.4 of the main paper, we read off the action
matrix from the reduced row echelon form of the elimina-
tion template. For large elimination templates, this method
may be impractical for the following two reasons. First, it is
slow since constructing the full reduced row echelon form
is time-consuming. Second, this approach is often numeri-
cally unstable. This means that due to round-off and trunca-
tion errors the output roots, when back substituted into the
initial polynomials, result in values that are far from being
zeros.

Here we recall an alternative approach from [9–11] for
the action matrix construction. This approach is faster than
the one based on the reduced row echelon form and more-
over it admits a numerically more accurate generalization.

Let M be an elimination template partitioned as M =[
ME MR MB

]
, where E , R and B are the sets of exces-

sive, reducible and basic monomials respectively. Let the

set of basic monomials B be partitioned as B = B1 ∪ B2,
where B2 = {a b : b ∈ B} ∩ B and B1 = B \ B2.

The LU decomposition of matrix ME can be generally

written as ME =

[
ΠELE 0

0 I

] [
UE
0

]
, where UE and LE are

upper- and lower-triangular matrices respectively, ΠE is a
row permutation matrix. Then we define

M ′ =

[
(ΠELE)

−1 0
0 I

]
M =

[
UE ∗ ∗
0 M ′

R M ′
B

]
,

where M ′
R is square and invertible. It follows that

M ′
Rv(R) = −M ′

Bv(B) and hence the action matrix reads

Ta =

[
−(M ′

R)−1M ′
B

P

]
,

where P is a binary matrix, i.e. a matrix consisting of 0 and
1, such that v(B2) = Pv(B).



Problem # 1 (nstd) 2 (std) 4 (nstd) 5 (nstd) 6 (std)

Error distrib.

-15 -10 -5 0
0
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1000

-15 -10 -5 0
0
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-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

Template size 7×15 11×20 14×40 18×36 52×68
#P 8 12 30 30 38

Med. error 3.67e–15 3.52e–14 4.64e–13 9.10e–14 2.46e–13
Ave. time (ms) 0.2 0.5 1.5 0.5 0.8

Problem # 7 (std) 8 (nstd) 11 (nstd) 12 (std) 13 (std)

Error distrib.

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

Template size 28×40 39×95 22×41 51×70 47×55
#P 20 75 26 35 21

Med. error 2.87e–14 2.63e–09 1.11e–12 4.11e–13 5.99e–14
Ave. time (ms) 0.8 3.6 0.7 7.2 0.7

Problem # 14 (std) 18 (std) 19 (std) 24 (std) 25 (nstd)

Error distrib.

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

Template size 87×114 87×114 118×158 47×55 16×36
#P 80 80 40 21 25

Med. error 2.24e–12 8.00e–13 3.01e–09 6.10e–14 4.78e–14
Ave. time (ms) 2.4 2.4 2.9 0.7 0.7

Problem # 26 (std) 27 (nstd) 30 (nstd) 34 (std)

Error distrib.

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

-15 -10 -5 0
0

500

1000

Template size 37×81 40×46 385×433 144×284
#P 50 7 82 165

Med. error 2.96e–12 9.27e–13 1.09e–08 7.47e–07
Ave. time (ms) 3.1 0.6 19.8 97

Table 4. A continuation of Tab. 3 for the remaining 19 minimal solvers. Each histogram shows log10 of numerical error distribution on
104 trials. It is also shown the template size of each problem and the number of permissible monomials (#P) used for the column pivoting
strategy from [11], see Sec. 12. For problem #1 the column pivoting was not applied as for this problem P is exactly the set of basic
monomials. For problem #19 the column pivoting was not applied as it led to worse results. The runtime includes both constructing the
coefficient matrix of the initial system and finding its solutions

As it was noted in [11], matrix M ′
R is often ill condi-

tioned and this is the main cause of numerical instabilities
in solving polynomial systems. Also in [11] the authors pro-
posed the following heuristic method of improving stability.
First, the set of basic monomials B is replaced with the set
of permissible monomials P = {p ∈ X : ap ∈ X}. The
partitions for X and M now become

X = E ∪ R ∪ P and M =
[
ME MR MP

]

respectively. Here R = {ap : p ∈ P}\P and E consists of
monomials which are neither in R nor in P . Then the LU
decomposition is applied to matrix

[
ME MR

]
:

M ′ =

UE ∗ ∗
0 UR M ′

P
0 0 N ′

P

 ,

where UE , UR are upper-triangular matrices and UR is
square and invertible. This is the starting point for the col-



umn pivoting strategy. Let the (pivoted) QR decomposition
of matrix N ′

P be

N ′
PΠ = Q

[
UP\B N ′′

B
]
,

where Π is the column permutation matrix, Q is orthogo-
nal matrix, UP\B is upper-triangular, square and invertible.
Pivoting defined by the matrix Π helps to reduce the condi-
tion number of UP\B and hence makes the further compu-
tation of its inverse matrix numerically more accurate. Let
us define

M ′′ =

I 0 0
0 I 0
0 0 Q⊤

M ′

I 0 0
0 I 0
0 0 Π


=

UE ∗ ∗ ∗
0 UR M ′′

P\B M ′′
B

0 0 UP\B N ′′
B

 ,

where M ′
PΠ =

[
M ′′

P\B M ′′
B

]
. If Π⊤v(P) =[

v(P \ B)
v(B)

]
, then it follows that

[
v(R)

v(P \ B)

]
= −

[
UR M ′′

P\B
0 UP\B

]−1 [
M ′′

B
N ′′

B

]
v(B)

= −

[
U−1
R M ′′

B − (U−1
R M ′′

P\B) (U
−1
P\B N ′′

B)

U−1
P\BN

′′
B

]
v(B). (10)

We note that the set of basic monomials B depends on the
permutation Π, which in turn depends on the entries of tem-
plate M . Therefore, in general B can vary depending on
problem instance. Since any multiple a b for b ∈ B belongs
to R∪P , it follows that the action matrix for the new basis
B can be read off from (10).

The column pivoting is a universal tool that may signif-
icantly enhance numerical accuracy with a certain compu-
tational overhead. It can be always applied provided that
#P > #B.

13. Experimental results
In this section we test the speed and numerical accuracy

of our Matlab solvers for all the minimal problems from
Tab. 1 and Tab. 2 of the main paper. The experiments were
performed on a system with Intel Core i5 CPU @ 2.3 GHz
and 8 GB of RAM. The results are presented in Tab. 3 and
Tab. 4.

In case the templates for standard and non-standard
bases had the same size, we chose the one with smaller nu-
merical error. The column pivoting strategy (see Sec. 12)
was applied for all solvers with #P > #B. However, for
some problems, the set of permissible monomials was man-
ually reduced to improve the speed/accuracy trade-off.

Finally, the numerical error is defined as follows. Let
the polynomial system F = 0 be written in the form
M(F )U = 0, where M(F ) and U = v([X]F ) are the
Macaulay matrix and monomial vector respectively. The
matrix M(F ) is normalized so that each its row has unit
length. Let dimK[X]/⟨F ⟩ = d, i number all solutions to
F = 0 including complex ones and Ui be the monomial
vector U evaluated at the ith solution. We measure the nu-
merical error of our solvers by the value∥∥∥M(F )

[
U1

∥U1∥2
. . . Ud

∥Ud∥2

]∥∥∥
2
,

where ∥ · ∥2 is the Frobenius norm.


