Transforming Model Prediction for Tracking - Supplementary

Christoph Mayer = Martin Danelljan

Fisher Yu

Goutam Bhat
Luc Van Gool

Matthieu Paul  Danda Pani Paudel

Computer Vision Lab, D-ITET, ETH Ziirich, Switzerland

Appendices

In this supplementary material, we first provide details
about training, model architecture and inference in Sec. A.
Further, we report visual results such as a comparison to
state-of-the-art trackers, a comparison of different model
predictors and failure cases of our tracker in Sec. B. After-
wards, we provide more detailed results of the experiments
shown in the main paper in Sec. C.

A. Training, Architecture and Inference

First, we provide additional details about the training
followed by a detailed description of the architectures em-
ployed and finally we provide further inference details.
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Figure 1. Visual comparison of the target score maps resulting
from different model predictors.

A.1. Training and Architecture Details

For training we produce the target states y by using a
Gaussian with standard deviation 1/4 relative to the base
target size and by settting 7 = 0.05 to differentiate be-
tween foreground and background regions in the corre-
sponding classification loss I.js adopted from DiMP [1]. For
the model predictor we extract features with a stride of 16
from the third block of the ResNet that we use as back-
bone. We initialize the backbone with the official weights
obtained by training the backbone on ImageNet [16] and
freeze the batch norm statistics during training. Since we
use a channel dimension of 256 for the Transformer and
the ResNet features have 1024 channels we employ an sin-
gle convolutional layer to decrease the number of chan-
nels before feeding the features into the Transformer En-
coder. The Transformer Encoder consists of layers contain-
ing multi-headed self attention and a feed-forward network.

Two Stage Previous Confidence
Model Prediction Tracking Results Threshold | LaSOT NFS OTB
v v 0.85 673 669 70.3
v v 0.90 67.6 669 70.1
v v 0.95 674 66.0 69.8

Table 1. Analysis of different inference settings an of their impact
on the tracking performance in terms of AUC of the success curve.

training frames ‘ NFS OTB UAV LaSOT LaSOTExtSub ‘ Speed [FPS]
1 initial 653 678 687 657 43.7 26.2
1 initial + 1 recent | 66.9 70.1 69.0  67.6 454 24.8
2 initial + I recent | 67.6 70.5 67.2  68.0 454 20.5
1initial + 2 recent | 66.7 70.8 694  67.6 44.4 21.8
1 initial + 3 recent | 66.8 70.5 69.2 67.6 44.2 17.6
1 initial + 4 recent | 67.2 70.1 682 67.3 44.7 132
1 initial + 5 recent 66.8 70.1 69.1 67.2 439 11.3

Table 2. Comparison of different number of training samples in
success AUC.

L OTB UAV LaSOT LaSOTExtSub

Classification ‘ 70.1 69.0 67.6 454
Classification v 69.2 67.3 67.9 45.5
Centerness v 66.3 674 64.4 413
Classification - Centerness v 67.8 68.7 65.8 453

Table 3. Impact of centerness scores on training and inference.
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Figure 2. Visual comparison of different trackers (ToMP-101, SuperDiMP [11] and STARK-ST101 [48]) on different LaSOT [19] se-

quences.

We use eight heads and a hidden dimension of 2048 for
the feed-forward network. Furthermore, we use Dropout
with probability 0.1 and layer normalization. The Trans-
former settings are adopted from DETR [5]. The predicted
target model weights for classification and bounding box
regression consist of a single 1 x 1 filter with 256 chan-
nels. The bounding box regression CNN consists of four
convolution-instance-normalization-ReLU layers and a fi-
nal convolution layer, followed by an exponential activa-
tion. The MLP for target extent encoding ¢ consists of three
layers (4 — 64 — 256 — 256) where each layer consists
of a linear projection, batch normalization and ReLU activa-
tion except the last that only consist of a linear projection.
The region-encoding tokens eg; and eges; are 256 dimen-
sional learnable embeddings.

A.2. Inference Details

In order to decide whether a previous tracking result
should be used for training of not we use the maximal value
of the target score map produced by the target model. In
particular, we select the sample if its confidence value is
above a certain threshold 7. Tab. 1 shows that the chosen
threshold of 0.9 leads to high performance on LaSOT [19],
NFS [22] and OTB-100 [46]. Furthermore, we follow Su-
perDiMP [1 1] and enter in the target not found state if the
maximal value of the target score map is bellow 0.25. More-

over, we use the same spatial resolution of the target scores
of 18 x 18 and the same search area scale factor of 5.0 dur-
ing inference and training.

Furthermore, we study the effect of using more than two
training frames stored in the sample memory. Instead of
using only one initial and one recent training frame to pre-
dict the network weights we test the impact of increasing
the number of recent training frames and of using multiple
initial training frames. We increase the number of initial
training frames with ground truth bounding box annotations
using an augmentation (vertical flipping and random trans-
lation). Tab. 2 shows the results for different combinations
of multiple initial and recent training frames. Note, that we
use the same network weights for all experiments trained
with one initial and one recent recent frame in all cases.
We observer that using more training frames can improve
the tracking performance but decreases the run-time. Fur-
thermore, we observe that the tracker greatly benefits from
including at least one recent frame for training.

A.3. Centerness

Our proposed bounding box regression component is in-
spired by FCOS [41] but in contrast to FCOS we omit
an auxiliary centerness branch. The classification head of
FCOS is trained to predict a high score for almost every
region inside the bounding box. The centerness branch is



therefore needed to identify the center location of the ob-
ject, used to select the bounding box offsets. In contrast,
our classification branch is directly trained to accurately lo-
cate the object’s center. The additional centerness branch is
therefore redundant. Nonetheless, we train our best model
with a centerness head and L¢epterness and report the results
in Tab. 3 (2"-4" rows). The 1 row shows the performance
when omitting centerness for training. We achieve compa-
rable results when using the model trained with centerness
but applying only the classification scores to localize the
target (2" row). Using only the centerness scores decreases
the performance (3™ row) because centerness often fails to
identify the target among distractors (see Fig. 3). Finally,
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Figure 3. Visual Comparison between centerness and classifica-
tion scores.
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Figure 4. Visualization of failure cases of our tracker.
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28,371 [48] [48] [7,28] [28,49] [28] [4,28] [28]

EAO 0.497 0496  0.530 0.505 0.497 0.491 0482 0472 0463 0.461
Accuracy 0.750  0.754  0.700 0.759 0.763 0.685 0.754 0.713 0.719 0.693
Robustness  0.798  0.793  0.869 0.817 0.789 0.842 0.777 0.795 0.798 0.803

Table 4. Comparison to the state of the art of segmentation only
methods on VOT2020ST [28] in terms of EAO score.

we follow FCOS and multiply the classification and center-
ness scores point-wise to retrieve the target object (4™ row).
We conclude that omitting the centerness branch for train-
ing and during inference to localize the target achieves the
best tracking performance.

B. Visual Results

In this part we provide visual results of our tracker. First,
we show three frames of different sequences where our
tracker outperforms the state of the art. Secondly, we com-
pare the produced target score map of our tracker with score
maps obtained by optimization based model prediction. Fi-
nally, we show some failure cases of our tracker.

B.1. Visual Comparison to the State of the Art

Fig. 2 shows three frames of eight different LaSOT [19]
sequences where each frame contains the ground truth an-
notation of the target object and the predictions of three dif-
ferent trackers: SuperDiMP [11], STARK-ST101 [48] and
ToMP-101. We observe that our tracker produces in most
sequences more robust and in some more accurate bound-
ing box predictions than the related methods. In particular
it achieves solid robustness for scenarios where distractors
are present but the target object is at least partially visible
and not undergoing a full occlusion.

B.2. Target Model Prediction

Fig. 1 shows the target score maps produced by the tar-
get model when using two different model predictors for
three different sequences. In detail we compare the tar-
get score map produced by SuperDiMP [I11] that adopts
the DiMP [1] model predictor with optimized settings. In
particular it uses a slightly smaller search area factor of 6
instead of 5 and a target score resolution of 22 instead of
18. Note, that our tracker uses 5 and 18 similar to DiMP [1]
as stated Sec. A.2. We observe that our model predictor
leads to much cleaner and unambiguous target localization
than DiMP. While the former often produces multiple local
maxima for distractors, our methods is able to almost fully
suppress these. An important design choice that enables this
is the transductive model weight and test feature prediction
produced by our Transformer based model predictor. How-
ever, the cleaner score maps come with the risk, that once
the target is lost and a distractor is tracked instead recov-
ering is less likely since our tracker effectively suppresses
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Figure 5. Success plots on the UAV123 [39], OTB-100 [46] and NFS [22] datasets in terms of overall AUC score, reported in the legend.
ToMP ToMP Keep STARK Tr STARK  Super Pr Siam STM Siam Retina FCOS
101 50 Track ST101 DiMP TransT SAOT ST50 DiMP DiMP R-CNN Track DiMP KYS RPN++ ATOM UPDT MAML MAML
[38] [48]  [44] [6] [58]  [48] [11] [15] [421 1211 [1] [2] [32] [12] [3] [43] [43]
UAVI23 669 690 69.7 682 675 69.1 69.1 - 67.7 68.0 649 647 653 - 613 642 545 - -
OTB-100 70.1 70.1 709 681 71.1 694 685 714 70.1 69.6 70.1 719 684 695 696 669 702 71.2 70.4
NFS 66.7 669 664 662 662 657 652 656 64.8 63.5 63.9 - 62.0 63.5 - 584 537 - -
Auto  Auto Siam Siam Siam Siam  Siam DaSiam
Ocean STN Match Track BAN CAR ECO DCFST PG-NET CRACT GCT GAT CLNet TLPG AttN FC++ MDNet CCOT RPN
[55] [36]  [54] [34] [3] [251 1131 [57] [35] [20] [231 241 [171 331 [53] [47] [40] [14] [59]
UAV123 - 64.9 - 67.1 631 614 532 - - 66.4 508 64.6 633 - 65.0 - - 51.3 57.7
OTB-100 684 693 714 - 69.6 - 69.1 709 69.1 72.6 648 71.0 - 698 712 683 678 68.2 65.8
NFS - - - - 59.4 - 46.6  64.1 - 62.5 - - 54.3 - - - 419 488 -

Table 5. Comparison with state-of-the-art on the OTB-100 [46], NFS [22] and UAV123 [39] datasets in terms of overall AUC score.

ToMP ToMP STARK Keep STARK Alpha Siam Tr  Super STM Pr DM Auto

101 50 ST101 Track ST50 Refine TransT R-CNN DiMP Dimp SAOT Track DTT DiMP Track Match TLPG TACT LTMU

(481 381 481 [491 [61 (421 44 [ 581 (211 [521 [151 (561 54 [33] [9] [10]

LaSOT 68.5 67.6 67.1 67.1 664 653 649 648 639 63.1 61.6 606 60.1 59.8 584 583 58.1 57.5 57.2
Siam Siam Siam PG  FCOS Global DaSiam Siam Siam Siam Retina Siam

DiMP Ocean AttN CRACT FC++ GAT NET MAML Track ATOM RPN BAN CAR CLNet RPN++ MAML Mask ROAM++ SPLT

[0 1551 [531  [201  [471  [241 (351 [431 271 021 590 1 251 07 2t @3 @elb o s [50]

LaSOT 569 560 56.0 54.9 544 539 531 523 521 515 515 514 507 499 496 480 467 44.7 42.6

Table 6. Comparison with state-of-the-art on the LaSOT [19] test set in terms of overall AUC score. The symbol T marks results that were
produced by Fan et al. [19] otherwise they are obtained directly from the official paper.

distractors. Similarly, our method learns to produce a score
map containing a Gaussian such that overall the maximum
score values are higher than by SuperDiMP. Thus, we chose
a relatively high threshold to decide whether to use a previ-
ous prediction as training sample or not.

B.3. Failure Cases

Fig. 4 shows failure cases of our tracker. In particular, it
shows three frames of four different LaSOT [19] sequences
containing the ground truth annotations and the predicted
bounding boxes of our tracker using a ResNet-101 [26] as
backbone. To summarize, our tracker typically fails if ob-
ject similar to the targets so called distractors are present.
While the sole presence of distractors typically does not

lead to tracking failure, our tracker shows difficulties in
sequences where the target is occluded and distractors are
present (1°' and 3™ row). Instead of detecting that the target
is occluded the tracker starts to track a distractor instead.
Another challenging scenario are sequences where the tar-
get and a distractor approach each other (2" row in Fig. 4)
or one occludes the other (4™ row in Fig. 4). The model
then detects only a single object instead of two in both sce-
narios. Once they diverge again and the tracker detects two
objects it typically fails to reliably differentiate between the
target and the distractor.
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Figure 6. Success and normalized precision plots on LaSOT [
reported in the legend.

C. Experiments

We provide more detailed experiments to complement
the comparison to the state of-the art performed in the main
paper. And provide results for the VOT2020ST [28] chal-
lenge when using AlphaRefine [49] on top of our method in
order to compare with methods that produce a segmentation
mask as output.

C.1. VOT2020 with AlphaRefine

In contrast to previous years where the sequences in
the VOT short-term challenge were annotated with bound-
ing boxes [29, 30] the sequences of the more recent chal-
lenges contain segmentation mask annotations [28, 31] of
the target in each frame. In the main paper we compare
our method with methods that produce bounding boxes.
Thus, in addition, we compare our method on the VOT2020
short-term challenge to methods that produce a segmen-
tation mask in each frame. Since our method produces
only a bounding box, we use AlphaRefine [49] that is able
to produce a segmentation mask give the bounding box.
Tab. 4 shows that our method achieves competitive results.
In particular ToMP-101 achieves the same EAO (for more
details on EAO we refer the reader to [28]) as STARK-
ST101+AR [48] that employs AlphaRefine too. Nonethe-
less, RPT [37] achieves higher EAO than our tracker. In
particular it scores a higher robustness but a lower accuracy
than our trackers.

C.2. UAV123, OTB-100 and NFS

To complement the results detailed in the paper, we
provide the success plots for the UAV123 [39] dataset
in Fig. 5a, the OTB-100 [46] dataset in Fig. 5b and the
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]. Our approach outperforms all other methods by a large margin in AUC,

NFS [22] dataset in Fig. 5c. Fig. 5a shows that Keep-
Track [38] and PrDiMP50 [15] achieve higher robustness
than our tracker (" < 0.6) but that our trackers together
with TransT [6] reaches the highest accuracy among all
trackers (I' > 0.7) compensating for the lower robustness.
Fig. 5b reveals similar conclusions on OTB-100. For NFS
Fig. 5c shows that our tracker is almost as robust as Keep-
Track [38] but achieves superior accuracy leading to a new
state of the art. While we reported only the methods with
the highest performances on these datasets in the main pa-
per, we compare our method in Tab. 5 with additional re-
lated methods.

C.3. LaSOT and LaSOTExtSub

In addition to the success plots, we provide the normal-
ized precision plots on the LaSOT [19] test set in Fig. 6 the
LaSOTExtSub [ 18] test set in Fig. 7. The normalized preci-
sion score NPrp measures the percentage of frames where
the normalized distance (relative to the target size) between
the predicted and ground-truth target center location is less
than a threshold D € [0,0.5]. The ranking is determined
by computing the AUC of each tracker. The AUC is re-
ported in the legend of Figs. 6b and 7b. We compare our
tracker on LaSOT with the state of the art in Tab. 6 and
show their performance if available in Fig. 6. In Fig. 7 we
show results of methods produced by Fan et al. [ 18] except
KeepTrack [38] and SuperDiMP [ 1 1] that we obtained from
Mayer et al. [38].
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Illumination  Partial Motion Camera Background Viewpoint Scale Full Fast Low Aspect

Variation Occlusion Deformation Blur Motion Rotation  Clutter Change Variation Occlusion Motion Out-of-View Resolution Ration Change | Total
LTMU 56.5 54.0 57.2 558  61.6 55.1 49.9 56.7 57.1 49.9 44.0 52.7 514 55.1 57.2
PrDiMP50 63.7 56.9 60.8 579 642 58.1 54.3 59.2 59.4 513 48.4 55.3 535 58.6 59.8
STMTrack 65.2 57.1 64.0 553 633 60.1 54.1 58.2 60.6 47.8 42.4 51.9 50.3 58.8 60.6
SuperDiMP 67.8 59.7 63.4 62.0 68.0 61.4 57.3 63.4 62.9 54.1 50.7 59.0 56.4 61.6 63.1
TrDiMP 67.5 61.1 64.4 624  68.1 62.4 58.9 62.8 63.4 56.4 53.0 60.7 58.1 62.3 63.9
Siam R-CNN 64.6 62.2 65.2 63.1 682 64.1 54.2 65.3 64.5 553 515 62.2 57.1 63.4 64.8
TransT 65.2 62.0 67.0 63.0 672 64.3 579 61.7 64.6 55.3 51.0 58.2 56.4 63.2 64.9
AlphaRefine 69.4 62.3 66.3 652 700 63.9 58.8 63.1 65.4 574 53.6 61.1 58.6 64.1 65.3
STARK-ST50 66.8 64.3 66.9 629  69.0 66.1 57.3 67.8 66.1 58.7 53.8 62.1 59.4 64.9 66.4
STARK-ST101 67.5 65.1 68.3 645  69.5 66.6 574 68.8 66.8 58.9 54.2 63.3 59.6 65.6 67.1
KeepTrack 69.7 64.1 67.0 66.7  71.0 65.3 61.2 66.9 66.8 60.1 57.7 64.1 62.0 65.9 67.1
ToMP-50 66.8 64.9 68.5 646 70.2 67.3 59.1 67.2 67.5 59.3 56.1 63.7 61.1 66.5 67.6
ToMP-101 69.0 65.3 69.4 652 717 67.8 61.5 69.2 68.4 59.1 57.9 64.1 62.5 67.2 68.5

Table 7. LaSOT [
corresponding attribute.

C.3.1 Attributes

To support the attribute based analysis in the main paper,
where we compared the performance of our tracker with
other Transformer based trackers, we provide the detailed
analysis for multiple trackers and ToMP in Tab. 7. ToMP-
101 achieves the best performance on all but three. It
achieves the second best results for Motion Blur behind
KeepTrack [38] and similar to AlphaRefine [49]. Further
ToMP-101 achieves the third best for Full Occlusion be-
hind KeepTrack [38] and ToMP-50. Similarly it scores
third for lllumination Variation behind KeepTrack [38] and
AlphaRefine [49]. We further observe, that discrimina-
tive model prediction based methods such as TrDiMP [44],
SuperDiMP [11], AlphaRefine [49], KeepTrack [38] and
ToMP all outperform STARK [48] on the attribute Back-
ground Clutter showing the advantage of using full training

] attribute-based analysis. Each column corresponds to the results computed on all sequences in the dataset with the

samples during tracking instead of cropped templates that
mainly cover the centered target.
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