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Abstract

This section provides additional material for the main
paper: §A contains further implementation details for
TrackFormer (§A.1), a visualization of the Transformer
encoder-decoder architecture (§A.3), and parameters for
multi-object tracking (§A.4). §B contains a discussion re-
lated to public detection evaluation (§B.1), and detailed
per-sequence results for MOT17 and MOTS20 (§B.2).

A. Implementation details
A.1. Backbone and training

We provide additional hyperparameters for
TrackFormer. This supports our implementation de-
tails reported in Section 4.2 of the main paper. The
Deformable DETR [23] encoder and decoder both apply 6
individual layers with multi-headed self-attention [17] with
8 attention heads. We do not use the “DC5” (dilated conv5)
version of the backbone as this will incur a large memory
requirement related to the larger resolution of the last
residual stage. We expect that using “DC5” or any other
heavier, or higher-resolution, backbone to provide better
accuracy and leave this for future work. Furthermore, we
also apply the refinement of deformable reference point
coined as bounding box refinement in [23].

Our training hyperparameters follow deformable
DETR [23]. The weighting parameters of the cost and their
corresponding loss terms are set to λcls = 2, λℓ1 = 5 and
λiou = 2. The probabilities for the track augmentation at
training time are pFN = 0.4 and pFP = 0.1 Furthermore,
every MOT17 [13] frame is jittered by 1% with respect
to the original image size similar to the adjacent frame
simulation.

A.2. Dataset splits

All experiments evaluated on dataset splits (ablation
studies and MOTS20 training set in Table 2) apply the same
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Figure A.1. The TrackFormer encoder-decoder architecture. We
indicate the tensor dimensions in squared brackets.

private training pipeline presented in Section 4.2 to each
split. For our ablation on the MOT17 [13] training set, we
separate the 7 sequences into 2 splits and report results from
training on the first 50% and evaluating on the last 50% of
frames. For MOTS20 we average validation metrics over
all splits and report the results from a single epoch (which
yields the best mean MOTA / MOTSA) over all splits, i.e.,
we do not take the best epoch for each individual split. Be-
fore training each of the 4 MOTS20 [18] splits, we pre-train
the model on all MOT17 sequences excluding the corre-
sponding split of the validation sequence.



A.3. Transformer encoder-decoder architecture

To foster the understanding of TrackFormer’s integration
of track queries within the decoder self-attention block, we
provide a simplified visualization of the encoder-decoder
architecture in Figure A.1. In comparison to the original
illustration in [4], we indicate track identities instead of spa-
tial encoding with color-coded queries. The frame features
(indicated in grey) are the final output of the CNN feature
extractor and have the same number of channels as both
query types. The entire Transformer architecture applies
N = 6 and M = 6 independently supervised encoder and
decoder layers, with feature and object encoding as in [4].
To improve, tracking consistency we stack the feature maps
of the previous and current frame and apply a spatial posi-
tional and temporal encoding as in [19] Track queries are
fed autoregressively from the previous frame output em-
beddings of the last decoding layer (before the final feed-
forward class and bounding box networks (FFN)). The ob-
ject encoding is achieved by adding the initial object queries
to the key (K) and query (Q) of the corresponding embed-
dings at each decoder layer.

A.4. Multi-object tracking parameters

In Section 3.2, we explain the process of track initial-
ization and removal over a sequence. The corresponding
hyperparameters were optimized by a grid search on the
MOT17 validation split. The grid search yielded track ini-
tialization and removal thresholds of σdetection = 0.4 and
σtrack = 0.4, respectively. TrackFormer benefits from an
NMS operation for the removal of strong occlusion cases
with an intersection over union larger than σNMS = 0.9.

For the track query re-identification, our search proposed
an optimal inactive patience and score of Ttrack-reid = 5 and
σtrack-reid = 0.4, respectively.

B. Experiments
B.1. Public detections and track filtering

TrackFormer implements a new tracking-by-attention
paradigm which requires track initializations to be filtered
for an evaluation with public detections. Here, we provide a
discussion on the comparability of TrackFormer with earlier
methods and different filtering schemes.

Common tracking-by-detection methods directly pro-
cess the MOT17 public detections and report their mean
tracking performance over all three sets. This is only possi-
ble for methods that perform data association on a bounding
box level. However, TrackFormer and point-based methods
such as CenterTrack [22] require a procedure for filtering
track initializations by public detections in a comparable
manner. Unfortunately, MOT17 does not provide a stan-
dardized protocol for such a filtering. The authors of Cen-
terTrack [22] filter detections based on bounding box center

Method IN IoU CD MOTA ↑ IDF1 ↑
Offline

MHT DAM [11] × 50.7 47.2
jCC [10] × 51.2 54.5
FWT [8] × 51.3 47.6
eHAF [15] × 51.8 54.7
TT [21] × 54.9 63.1
MPNTrack [3] × 58.8 61.7
Lif T [9] × 60.5 65.6

Online

MOTDT [5] × 50.9 52.7
FAMNet [6] × 52.0 48.7
Tracktor++ [1] × 56.3 55.1
GSM Tracktor [12] × 56.4 57.8
TMOH [16] × 62.1 62.8

CenterTrack [22] × 60.5 55.7
TrackFormer × 62.3 57.6

CenterTrack [22] × 61.5 59.6
TrackFormer × 63.4 60.0

Table A.1. Comparison of modern multi-object tracking methods
evaluated on the MOT17 [13] test set for different public detec-
tion processing. Public detections are either directly processed as
input (IN) or applied for filtering of track initializations by center
distance (CD) or intersection over union (IoU). We report mean
results over the three sets of public detections provided by [13]
and separate between online and offline approaches. The arrows
indicate low or high optimal metric values.

distances (CD). Each public detection can possibly initialize
a single track but only if its center point falls in the bound-
ing box area of the corresponding track.

In Table A.1, we revisit our MOT17 test set results but
with this public detections center distance (CD) filtering,
while also inspecting the CenterTrack per-sequence results
in Table A.5. We observe that this filtering does not reflect
the quality differences in each set of public detections, i.e.,
DPM [7] and SDP [20] results are expected to be the worst
and best, respectively, but their difference is small.

We hypothesize that a center distance filtering is not in
accordance with the common public detection setting and
propose a filtering based on Intersection over Union (IoU).
For IoU filtering, public detections only initialize a track if
they have an IoU larger than 0.5. The results in Table A.1
show that for TrackFormer and CenterTrack IoU filtering
performs worse compared to the CD filtering which is ex-
pected as this is a more challenging evaluation protocol. We
believe IoU-based filtering (instead of CD-based) provides
a fairer comparison to previous MOT methods which di-
rectly process public detections as inputs (IN). This is val-



idated by the per-sequence results in Table A.4, where IoU
filtering shows differences across detectors that are more
meaningfully correlated with detector performance, com-
pared to the relatively uniform performance across detec-
tions with the CD based method in Table A.5 (where DPM,
FRCNN and SDP show very similar performance).

Consequently, we follow the IoU-based filtering protocol
to compare with CenterTrack in our main paper. While our
gain over CenterTrack seems similar across the two filtering
techniques for MOTA (see Table A.1), the gain in IDF1 is
significantly larger under the more challenging IoU-based
protocol, which suggests that CenterTrack benefits from the
less challenging CD-based filtering protocol, while Track-
Former does not rely on the filtering for achieving its high
IDF1 tracking accuracy.

B.2. MOT17 and MOTS20 sequence results

In Table A.3 and Table A.4, we provide per-sequence
MOT17 [13] test set results for private and public detec-
tion filtering via Intersection over Union (IoU), respectively.
Futhermore, we present per-sequence TrackFormer results
on the MOTS20 [18] test set in Table A.2.

Evaluation metrics In Section 4.1 we explained two
compound metrics for the evaluation of MOT results,
namely, Multi-Object Tracking Accuracy (MOTA) and
Identity F1 score (IDF1). [2] However, the MOTChallenge
benchmark implements all CLEAR MOT [2] evaluation
metrics. In addition to MOTA and IDF1, we report the fol-
lowing CLEAR MOT metrics:

MT: Ground truth tracks covered for at least 80%.

ML: Ground truth tracks covered for at most 20%.

FP: False positive bounding boxes not corre-
sponding to any ground truth.

FN: False negative ground truth boxes not cov-
ered by any bounding box.

ID Sw.: Bounding boxes switching the correspond-
ing ground truth identity.

sMOTSA: Mask-based Multi-Object Tracking Accu-
racy (MOTA) which counts true positives in-
stead of only masks with IoU larger than 0.5.

Acknowledgements: We are grateful for discussions with
Jitendra Malik, Karttikeya Mangalam, and David Novotny.

Sequence sMOTSA ↑ IDF1 ↑ MOTSA ↑ FP ↓ FN ↓ ID Sw. ↓

MOTS20-01 59.8 68.0 79.6 255 364 16
MOTS20-06 63.9 65.1 78.7 595 1335 158
MOTS20-07 43.2 53.6 58.5 834 4433 75
MOTS20-12 62.0 76.8 74.6 549 1063 29

ALL 54.9 63.6 69.9 2233 7195 278

Table A.2. We present TrackFormer tracking and segmentation
results on each individual sequence of the MOTS20 [18] test set.
MOTS20 is evaluated in a private detections setting. The arrows
indicate low or high optimal metric values.

https://motchallenge.net/


Sequence Public detection MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓
MOT17-01 DPM [7] 57.9 49.7 11 4 477 2191 45
MOT17-03 DPM 88.6 79.6 124 3 2469 9365 122
MOT17-06 DPM 59.8 60.8 104 27 1791 2775 173
MOT17-07 DPM 65.5 49.5 24 5 1030 4671 118
MOT17-08 DPM 54.5 42.5 24 9 1461 7861 279
MOT17-12 DPM 51.8 63.0 43 14 1880 2258 42
MOT17-14 DPM 47.4 54.9 41 20 2426 7138 164

MOT17-01 FRCNN [14] 57.9 49.7 11 4 477 2191 45
MOT17-03 FRCNN 88.6 79.6 124 3 2469 9365 122
MOT17-06 FRCNN 59.8 60.8 104 27 1791 2775 173
MOT17-07 FRCNN 65.5 49.5 24 5 1030 4671 118
MOT17-08 FRCNN 54.5 42.5 24 9 1461 7861 279
MOT17-12 FRCNN 51.8 63.0 43 14 1880 2258 42
MOT17-14 FRCNN 47.4 54.9 41 20 2426 7138 164

MOT17-01 SDP [20] 57.9 49.7 11 4 477 2191 45
MOT17-03 SDP 88.6 79.6 124 3 2469 9365 122
MOT17-06 SDP 59.8 60.8 104 27 1791 2775 173
MOT17-07 SDP 65.5 49.5 24 5 1030 4671 118
MOT17-08 SDP 54.5 42.5 24 9 1461 7861 279
MOT17-12 SDP 51.8 63.0 43 14 1880 2258 42
MOT17-14 SDP 47.4 54.9 41 20 2426 7138 164
All All 74.1 68.0 1113 246 34602 108777 2829

Table A.3. We report private TrackFormer results on each individual sequence evaluated on the MOT17 [13] test set. To follow the
official MOT17 format, we display the same results per public detection set. The arrows indicate low or high optimal metric values.

Sequence Public detection MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓
MOT17-01 DPM [7] 49.9 43.0 5 8 258 2932 40
MOT17-03 DPM 74.0 66.5 85 18 1389 25396 374
MOT17-06 DPM 53.6 51.8 63 75 711 4575 180
MOT17-07 DPM 52.6 48.1 12 16 258 7663 88
MOT17-08 DPM 32.5 31.9 10 32 288 13838 128
MOT17-12 DPM 51.3 57.7 21 31 606 3565 53
MOT17-14 DPM 38.1 42.0 15 63 627 10505 314

MOT17-01 FRCNN [14] 50.9 42.3 8 6 308 2813 48
MOT17-03 FRCNN 75.3 67.0 84 16 1434 24040 335
MOT17-06 FRCNN 57.2 54.8 73 48 960 3856 226
MOT17-07 FRCNN 52.4 47.9 12 11 499 7437 106
MOT17-08 FRCNN 31.1 31.7 10 36 285 14166 102
MOT17-12 FRCNN 47.7 56.7 19 32 702 3785 45
MOT17-14 FRCNN 37.8 41.8 17 56 1300 9795 406

MOT17-01 SDP [20] 53.7 45.3 10 5 556 2386 47
MOT17-03 SDP 79.6 65.8 95 13 2134 18632 545
MOT17-06 SDP 56.4 54.0 82 57 1017 3889 228
MOT17-07 SDP 54.6 47.8 16 11 590 6965 121
MOT17-08 SDP 35.0 33.0 12 27 443 13152 144
MOT17-12 SDP 48.9 57.5 22 28 850 3527 54
MOT17-14 SDP 40.4 42.4 17 49 1376 9206 434

ALL ALL 62.3 57.6 688 638 16591 192123 4018

Table A.4. We report TrackFormer results on each individual sequence and set of public detections evaluated on the MOT17 [13] test set.
We apply our minimum Intersection over Union (IoU) public detection filtering. The arrows indicate low or high optimal metric values.



Sequence Public detection MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓
MOT17-01 DPM [7] 41.6 44.2 5 8 496 3252 22
MOT17-03 DPM 79.3 71.6 94 8 1142 20297 191
MOT17-06 DPM 54.8 42.0 54 63 314 4839 175
MOT17-07 DPM 44.8 42.0 11 16 1322 7851 147
MOT17-08 DPM 26.5 32.2 11 37 378 15066 88
MOT17-12 DPM 46.1 53.1 16 45 207 4434 30
MOT17-14 DPM 31.6 36.6 13 78 636 11812 196

MOT17-01 FRCNN [14] 41.0 42.1 6 9 571 3207 25
MOT17-03 FRCNN 79.6 72.7 93 7 1234 19945 180
MOT17-06 FRCNN 55.6 42.9 57 59 363 4676 190
MOT17-07 FRCNN 45.5 41.5 13 15 1263 7785 156
MOT17-08 FRCNN 26.5 31.9 11 36 332 15113 89
MOT17-12 FRCNN 46.1 52.6 15 45 197 4443 30
MOT17-14 FRCNN 31.6 37.6 13 77 780 11653 202

MOT17-01 SDP [20] 41.8 44.3 7 8 612 3112 27
MOT17-03 SDP 80.0 72.0 93 8 1223 19530 181
MOT17-06 SDP 55.5 43.8 56 61 354 4712 181
MOT17-07 SDP 45.2 42.4 13 15 1332 7775 147
MOT17-08 SDP 26.6 32.3 11 36 350 15067 91
MOT17-12 SDP 46.0 53.0 16 45 221 4426 30
MOT17-14 SDP 31.7 37.1 13 76 749 11677 205

All All 61.5 59.6 621 752 14076 200672 2583

Table A.5. We report the original per-sequence CenterTrack [22] MOT17 [13] test set results with Center Distance (CD) public detection
filtering. The results do not reflect the varying object detection performance of DPM, FRCNN and SDP, respectively. The arrows indicate
low or high optimal metric values.
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