Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised
Semantic Segmentation and Localization

Supplementary Material

1. Implementation Details

Here, we present full implementations details for repro-
ducing our results.

Spectral Decomposition We operate on images at their
full resolution. For the spectral decomposition step, we start
by extracting the key features f € RC*M/PXN/P from the
final layer of the vision transformer. We then normalize
these features along the embedding dimension and compute
the affinity matrix We,t. Next, we calculate color features
Winn by first downsampling the image to the intermedi-
ate resolution resolution M’ x N’ and then calculating the
sparse KNN affinity matrix using the implementation from
PyMatting [15]. We use M’ = M /8 and N’ = N/8 for all
experiments.

Next we perform the fusion of color and feature infor-
mation. If P = 8, then ]g,év = M’ - N’, so the feature
affinities above are already at the intermediate resolution.
If P = 16, the feature affinities are upscaled 2x to size
M’ x N'. The affinities are summed, weighted by Ay, and
the eigenvectors of the Laplacian L are calculated using the
Lanczos algorithm.

We also need to address the fact that vision transform-
ers only operates on images whose size is a multiple of the
patch size P. Since we operate on images at their full res-
olution, which is not always a multiple of P, this presents
a small complication. To resolve this, we simply crop im-
ages to the nearest multiple of P by truncating the right and
top edges. For object localization, this means that we do
not predict bounding box coordinates in the cropped edge
regions. For the segmentation task, we compute segmen-
tations on the cropped image and then simply replicate the
right and bottom edges until the segmentation matches the
original image. Fortunately, since the patch size is quite
small relative to the image resolution, this cropping is not a
large issue for the vast majority of images.

Object Localization For the object segmentation task, we

M N
consider the smallest eigenvector y; € R P2 of L with

nonzero eigenvalue. We reshape y; to size % X % and com-

pute its largest fully-connected component. We then draw

a bounding box (x1, y1, T2, y2) around this component and
multiply its coordinates by P to obtain the bounding box in
the scale of the original image.

Unsupervised single-object segmentation Single-object
segmentation is a natural extension of our localization
pipeline. As above, we first using the Fiedler eigenvector to
find a coarse object segmentation. We then apply a pairwise
CRF to increase the resolution of our segmentations back to
the original image resolution (M, N). For the CRF, we use
the implementation from [24] and leave all parameters on
their default settings.

Semantic Segmentation For the semantic segmentation
task, we consider the n smallest eigenvectors {y; : i < K}
of L, reshaped into a tensor of size n x % x . All ex-
periments use n = 15. We cluster these eigenvectors using
k-means clustering with k¥ = 15 to obtain a discrete (non-
semantic) segmentation of size % X % for each image; this
breaks the image into k separate segments/regions. In each
image, the largest segment is considered to be the back-
ground region. We then compute a feature vector for each of
the (k — 1) x T non-background segments in our dataset of
size T'. This feature vector is computed by taking a bound-
ing box around each segment, expanding this bounding box
by 2 patches, cropping this region of the image, and apply-
ing the self-supervised transformer to this cropped image.
These segment features are clustered over the dataset via
K-means clustering with K = 20 (which is the number of
non-background classes in PASCAL VOC). Finally, associ-
ating each segment in each image with its cluster produces
(low-resolution) semantic segmentations. We carry out the
above steps on the t rain_aug set of PASCAL VOC.

For the self-training stage, we begin by upscaling each
(low-resolution) semantic segmentation obtained in the pre-
vious step to the original image resolution. We train a
ResNet-50 with a pretrained DINO [6] backbone and a
DeepLab [7] head. We train for 2000 steps with the
Adam [22] optimizer, learning rate 1 - 10~%, batch size 144,
and random crops of size 224. We decay the learning rate
to zero linearly over the course of training. This setup was
not extensively tuned and could likely be improved with a



comprehensive hyperparameter sweep. Finally, we evaluate
this model on the val set of PASCAL VOC.

Computational Requirements All experiments are per-
formed on a single NVidia GPU with 16GB of memory. The
eigenvector computation is performed on the CPU and takes
approximately 0.5s for an image of size 512px at interme-
diate resolution H' = W’ = H/8 = W/8 = 32px. Train-
ing the semantic segmentation network from the pseudola-
beled images takes approximately 2 hours to finish 2000
steps. These low computational requirements are one of the
strengths of our method, and make it a sensible baseline for
future work.

2. Additional Qualitative Examples

We show additional qualitative examples of our method,
including the extracted eigenvectors (Fig. 7) and results on
single-object localization (Fig. 8) and single-object segmen-
tation (Fig. 9). Finally, for the semantic segmentation task,
we show the classes discovered by our approach. It is im-
portant to note that, since our approach is fully unsuper-
vised and uses self-supervised features, eigensegment clus-
ters do not necessarily align with the semantic categories
annotated in the dataset (in this case, PASCAL VOC). In
Fig. 10 we show the K = 21 categories found in the DINO
feature space by our method and observe that, while some
align with the ground truth label set (e.g., bus, dog, airplane,
train), others do not (e.g., cluster 2 seems to be ‘animal
heads* instead of a species-specific cluster).

3. Additional Experiments and Ablations

In this section, we perform additional experiments and
ablations in order to better understand the strengths and
weaknesses of our method.

Ablation: Color Information To understand the impor-
tance of adding color information to the features we evalu-
ate the performance for different values of Ay, in Tab. 7.
When Ay, = 0, the normalized Laplacian matrix L is com-
posed purely of semantic information. When Ay, — oo,
the normalized Laplacian matrix L is composed purely of
color information. Larger models and variants with smaller
patches benefit less from additional color information as
their features likely inherently contain more local image in-
formation. Using color features alone is ineffective.

Ablation: Feature Type In Tab. 6, we present results
when features are extracted from different parts of a self-
attention layer. Features from attention keys perform best
by a large margin, in line with the intuition that the key
projection layer should align keys into a shared space for
subsequent comparison with query vectors.

Ablation: Feature Depth In Tab. 8, we present results
when features are extracted from different blocks of a ViT
network. We find that features from later blocks perform
better; they contain semantic information which is both
spatially-localized and easy to extract with spectral meth-
ods.

Ablation: Network Architecture In Tab. 9, we present
results when features are extracted from three new archi-
tectures: ResNet-50, ConvNext [26], and XCit [12]. Con-
vNext is a purely-convolutional network pretrained (in a su-
pervised manner) on ImageNet, and it may be thought of as
an improved ResNet. XCiT is a transformer with cross-
covariance attention (i.e. attention over features rather than
spatial locations) pretrained using DINO. ConvNext sub-
stantially outperforms ResNet-50 under this setup, demon-
strating a link between classification performance and un-
supervised object localization performance. Nonetheless,
both ConvNext and XCiT lag behind the strong perfor-
mance of the standard ViT, suggesting that the well-
localized nature of spatial self-attention is one of the keys
to the success of our deep spectral segmentation approach.

Ablation: Semantic Segmentation Pipeline In Tab. 10
and Tab. 11, we present ablation results for varying two as-
pects of our semantic segmentation pipeline: the number of
eigenvectors used in the first stage, and the number of clus-
ters K used in the second stage. We see that our method
is fairly robust to the number of eigenvectors used in the
first stage, unless one uses a very small number of eigen-
vectors (i.e. fewer than three). For the number of clusters
K, we first note that the value used in the main paper is not
chosen empirically, but rather set to the number of classes
(incl. background) in the PASCAL VOC dataset, as is com-
mon for evaluation purposes. In the ablation, for K > 20
(i.e. over-clustering), we compute the optimal matching be-
tween our predictions and the ground-truth classes. Thus,
larger K yields superior mloU scores.

Additional Experiment: Class-Agnostic Detection In
Tab. 12, we give results for a slightly modified detection
setting previously explored in [33]. In this setting, denoted
class-agnostic detection, we train a class-agnostic object de-
tection model by using the bounding boxes obtained from
our method as pseudo-labels. For fair comparison, we fol-
low the same training and evaluation procedure as LOST,
including all hyperparameters. We see that our method out-
performs LOST despite not tuning any hyperparameters for
this task.

4. Discussion of Failure Cases

Here, we show examples of failure cases and discuss
their potential causes, with the goal of fascilitating future
research into unsupervised segmentation.



Feature CorLoc
Final attention key (k) 61.6
Final attention query (q) 33.1
Final attention value (v) 49.9
Final attention output (o) 37.3

Table 6. Feature type ablation. Single-object localization perfor-
mance using different features of a DINO-pretrained ViT-S model,
evaluated on PASCAL VOC 2007. Key features perform slightly
better than value and much better than query or output features.

Aknn 0.0 1.0 8.0 10.0 inf

ViT-S-16 58.0 60.1 61.9 615 -
ViT-B-16 | 57.7 59.5 61.1 61.2 242
ViT-S-8 594 600 62.6 625 -
ViT-B-8 60.5 612 62.7 625 -

Table 7. Importance of color information. An ablation of single-
object model localization performance for different values of A\xnn
on PASCAL VOC 2012. We find that larger models benefit less
from color information, similar to models with smaller patches, as
their features likely contain more color information per se.

Block mloU
12 61.6
11 61.4
8 50.5

4 28.2

Table 8. Ablation across ViT blocks. Single-object localization
performance (CorLoc) on PASCAL VOC 2007 using features ex-
tracted from different blocks of a ViT-s16 (DINO) model. Note
that the model has 12 blocks, so 12 refers to the last block.

Arch. Feature CorLoc
ConvNext Last conv. in stage 2 41.8
ConvNext Last conv. in stage 3 40.7
ConvNext Last block in stage 2 38.8
ConvNext Last block in stage 3 31.2
XCiT Cross-covariance attention key 33.6
ResNet-50 Last block 26.6

Table 9. Ablation across new architectures. Single-object lo-
calization performance (CorLoc) on PASCAL VOC 2007 using
features extracted from ConvNext [26] and XCit [12].

Spectral Decomposition Although the notion of a failure
case for eigenvectors is not well-defined, we will charac-
terize a failure case as one in which the vectors produced
by our method do not match up with our human intuition
about the major objects in the scene. We show examples in
Fig. 11. These failure cases often occur when a very small
object in the foreground lies in the plane of the image, for

Num. Eigs mloU (w/ST) mloU
3 29.7 32.7
5 333 36.3
10 31.4 37.5
15 31.8 36.0

Table 10. Ablation: Number of eigenvectors for semantic seg-
mentation. We vary the number of eigenvectors m used in the
first step of our semantic segmentation pipeline. Using only three
eigenvectors performs poorly, as they are not always sufficient to
differentiate different segments of complex scenes. Above three
eigenvectors, our method is not very sensitive to the exact number
of eigenvectors used.

K mloU
20 333
30 38.5

40 428

Table 11. Ablation: Value of K for semantic segmentation. We
vary the number of clusters K used in the second step of our se-
mantic segmentation pipeline. For K > 20 (i.e. over-clustering),
we compute the optimal matching between our semantic clusters
and the ground-truth classes. Note that, as a result, larger K yield
superior mloU numbers. We report results without self-training.

Method CorLoc
LOST (w/ self-training) 64.5
Ours (w/ self-training) 65.1

Table 12. Additional experiment: class-agnostic detection on
VOC2007. In this experiment, we train a class-agnostic object
detection model by using the bounding boxes obtained from our
method as pseudo-labels. For fair comparison, we follow the same
training and evaluation procedure as LOST, which refers to this
setup as CAD (class-agnostic detection).

example in the last row of the figure. In these cases, the first
eigensegment will usually segment this small region. An-
other failure case in PASCAL VOC occurs when images
have borders or frames (these images are present due to
the web-scraped nature of the dataset). In these cases, the
model nearly always identifies the frame in its first eigen-
vector.

Object Localization We show examples of failure cases
for the object localization task in Fig. 11. When our spectral
segmentation method fails, it is usually the result of locat-
ing a group of semantically related objects (e.g. a group of
people) rather than a single entity (e.g. an individual per-
son). We note, however, that in many cases these instances
are indeed separated by the latter eigenvalues (see Fig. 3 in
the main paper); utilizing this information to separate object
instances could be an interesting avenue for future research.



Semantic Segmentation We show examples of failure
cases for the semantic segmentation task in Fig. 11. We
see that the network sometimes fails to detect multiple dis-
tinct semantic regions in the same image. Qualitatively, we
have observed that this failure mode is actually more com-
mon after self-training. In other words, self-training seems
to improve performance overall by improving the quality of
individual masks, but also seems to hurts the models’ ability
to segment multiple regions in the same image. There are
also some failure cases in which our network should have
sharper object boundaries, as is the case with most segmen-
tation networks.

5. Additional Related Work

Here, we discuss relevant work that could not be in-
cluded in the main paper due to space constraints.

Unsupervised Segmentation Current methods for unsu-
pervised semantic segmentation can broadly be character-
ized as either generative or discriminative approaches.

For single-object segmentation, generative methods cur-
rently rank as the most active research direction, with nu-
merous works having been proposed in the last two years
[3,4,8,19,20,29,39,40]. Most commonly, these methods
work by generating images in a layerwise fashion and com-
positing the results. For example, ReDO [8] uses a GAN
to re-draw new objects on top of existing objects/regions,
and Copy-Paste GAN [2] copies part of one image onto
the other. Labels4Free [1] trains a StyleGAN to generate
images in a layer-wise fashion, from which a segmentation
may easily be extracted. [29,39] extract segmentations from
pretrained generative models such as BigBiGAN. However,
these generative approaches are severely limited in that they
only perform foreground-background segmentation: they
can only segment a single object in each image, and most
involve training new GANSs. As a result, they are not well-
suited to segmenting complex scenes nor to assigning se-
mantic labels to objects. Another family of methods, most
of which adopt a variational approach [23], focus on unsu-
pervised scene decomposition, effectively segmenting mul-
tiple objects in an image [5, 1 1,13, 14,16,25,27,30]. How-
ever, these methods cannot assign semantic categories to
objects and struggle significantly on complex real-world
data [16,21].

Discriminative approaches are primarily based on clus-
tering and contrastive learning. Invariant Information Clus-
tering (IIC) [18] predicts pixel-wise class assignments and
maximizes the mutual information between different views
of the same image. SegSort [|7] maximizes within-
segment similarity and minimizes cross-segment similar-
ity by sorting and clustering pixel embeddings. Hierarchi-
cal Grouping [41] performs contour detection, recursively
merges segments, and then performs contrastive learning.

MaskContrast [38], the current state of the art in unsu-
pervised semantic segmentation, uses saliency detection to
find object segments (i.e. the foreground) and then learns
pixel-wise embeddings via a contrastive objective. How-
ever, MaskContrast relies heavily on a saliency network
which is initialized with a pretrained (fully-supervised) net-
work. However, it relies on the assumption that all fore-
ground pixels belong to the same object category, which is
not necessarily the case. As a result, it is limited to predict-
ing a single class per image without further finetuning. Fi-
nally, DFF [10] uses pre-trained features and performs non-
negative matrix factorization for co-segmentation.

6. Further Description of the Laplacian

In this section, we present a slightly extended description
of the spectral graph theoretic methods that underly our pa-
per.

Consider a connected, undirected graph G = (V, E)
with edges E and vertices V. We denote by W = (w;;)
the edge weights between vertices ¢ and j. In our case, G
corresponds to an image I, where the vertices V' are image
patches and the edge weights W are defined by the semantic
affinities of patches.

Let f : V — R be a real-valued function defined on the
vertices of G. Note that these functions are synonymous
with vectors of length V', and are thus also synonymous with
segmentation maps. We begin by asking the question: what
does it mean for a function f to be smooth with respect to
the graph G?

Intuitively, f is smooth when its value at a vertex is sim-
ilar to its value at each of the vertex’s neighbors. If we
quantify this similarity using the sum of squared errors, we

obtain:
> (F@) = fG))? 1)
(i,5)EE
which is a symmetric quadratic form. This means that there
exists a symmetric matrix L such that

o' Lr = Z (z; — x5)?

(i,5)€E

for z € R™ with n = |V|. This matrix L is the called
Laplacian of G.

While there are many ways to define L, we present this
definition because we believe it gives the greatest insight
into the success of our method. The standard way of defin-
ing L is by the formula L = D — W, where D;; = deg(i) is
the diagonal matrix of row-wise sums of W. The quadratic
form definition makes clear some of the fundamental prop-
erties of the Laplacian: L is symmetric and positive semi-
definite, since T Lz > 0 for any x. Additionally, its the
smallest eigenvalue is 0, corresponding to a (non-zero) con-
stant eigenfunction.



To gain intuition for the Laplacian, we present a very
simple example from the domain of physics, adapted from
[28]. Consider modeling a fluid which flows between a set
of reservoirs (vertices) through pipes (edges) with different
capacities. Physically, the fluid flow through an edge is pro-
portional to the difference in pressure between its vertices,
x; — x;. Since the total flow into each vertex equals the total
flow out, the sum of the flows along a vertex i is 0:

0= Z Tj — Z xz:deg(z)x,— Z Z;

JEN(3) JEN(3) JEN(i)
=((D—W)z); = (Lx);

This is known as the Laplace equation Lz = 0, and it is the
simplest special case of Poisson’s equation Lz = h.

The Laplacian spectrum is the centerpiece of our
method. As described in the main paper, the eigenfunc-
tions of L are orthonormal and form a basis for the space
of bounded functions on G. The Laplacian spectrum does
not fully determine the underlying graph, but it nonetheless
contains a plethora of information about its structure. Our
paper leverages this information for a variety of unsuper-
vised dense computer vision tasks.

For further reading in spectral graph theory, we en-
courage the reader to look into the following resources:

[5 ’ > ]'

7. Broader Impact

It is important to discuss the broader impact of our work
with respect to methodological and ethical considerations.

From an ethical perspective, models trained on large-
scale datasets—even the ones considered in our work
which are trained without supervision — might reflect bi-
ases and stereotypes introduced during the image collection
process [31,32,36,37]. In addition, datasets such as Ima-
geNet (used to train the models) and PASCAL VOC (used in
our evaluations) contain images from the web (e.g., Flickr).
This data is collected without consent and might also con-
tain inappropriate content [3 1], which raises ethical and le-
gal issues. Our method discovers concepts existing in the
data through the lens of self-supervised pre-training and, as
such, it may be implicitly affected by underlying biases. For
this reason, our method should only be used for research
purposes and not in any critical or production applications.

From a methodological perspective, our approach re-
flects the degree to which different object categories are
encoded in the feature space of self-supervised learners.
Since we do not fine-tune models on a specific dataset for
a specific task (e.g., semantic segmentation), these pre-
dicted categories may differ from the pre-defined set of
categories which are (somewhat arbitrarily) annotated in a
given benchmark. For example, the categories found by the
decomposition and clustering of DINO features, might not

necessarily align with the ones annotated in PASCAL VOC;
in fact, there is little reason why that should be besides some
commonly occurring objects. Therefore, how to properly
and fairly evaluate fully unsupervised algorithms remains
an open question.



Figure 7. Additional examples of eigenvectors extracted by our method on random images from PASCAL VOC 2012. The first
column in each column shows the original image, while the following three columns show the first three eigenvectors.
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Figure 8. Additional object localization examples of our method on random images from PASCAL VOC 2012. The first column
shows the original image, while the following three columns show our first eigenvector (thresholded at zero), our predicted bounding box,
and the ground truth bounding box, respectively. Our bounding box is colored in green or red based on whether it has greater than 50%
mloU with one of the ground-truth bounding boxes.



Figure 9. Examples of our method for the single-object segmentation task on random images from CUB. The first row in each column
shows the original image, while the following three rows show our first eigenvector (thresholded at zero), our predicted segmentation, and
the ground-truth segmentation. Our segmentation masks accurately locate the bird, often segmenting it without including other objects such
as branches or leaves (which is a common failure point of prior state-of-the-art methods). Note that these images are not cherry picked in
any way; they are the first images in the CUB dataset.



Figure 10. Per-pseudoclass examples of our method for the semantic segmentation task on random images from the validation set
of PASCAL VOC 2012. For each pseudoclass (i.e. cluster), we show four randomly selected images from PASCAL VOC for which the
given class is the largest segmented region in the object. We see that our pseudoclasses correspond to numerous identifiable concept such
as people, buses, boats, cats, airplanes, and bicycles without any human supervision.



Image 1** Eigenvector 2" Eigenvector 3" Eigenvector 4" Eigenvector

Figure 11. Examples of failure cases for the eigensegments. The eigenvectors of the feature Laplacian do not correspond to the primary
objects and regions in the scene. These failure cases often occur when a very small object in the foreground lies in the plane of the image,
for example in the last image above.

Image 1% Eigenvector Mask Prediction Ground Truth
- - T

Figure 12. Examples of failure cases for the object localization task. When our spectral segmentation method fails, it is usually the
result of locating a group of semantically related objects (e.g. a group of people) rather than a single entity (e.g. an individual person). We
note, however, that in many cases these instances are indeed separated by the latter eigenvalues (see Fig. 1); utilizing this information to
separate object instances could be an interesting avenue for future research.
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Figure 13. Examples of failure cases for the semantic segmentation task. The network sometimes fails to detect multiple distinct
semantic regions in the same image. Qualitatively, we have observed that this failure mode is actually more common after self-training. In
other words, self-training seems to improve performance overall by improving the quality of individual masks, but also seems to hurts the
models’ ability to segment multiple regions in the same image. There are also some failure cases in which our network should have sharper
object boundaries, as is the case with most segmentation networks.
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