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A. Implementation Details
A.1. Details for SEED

The overall SEED schema is summarized in Algorithm
1. For each data batch, we sample a model batch stochasti-
cally and then utilize SEED to train each model batch. We
first calculate model confidence in each model batch, which
has two-fold utilities in the SEED: 1) weighting the pre-
dictions from different models to generate more confident
ensemble prediction; 2) weighting the gradients from intra-
model adaptation and inter-model interaction losses with re-
spect to the feature extractors. After SEED training, we can
obtain a “once-for-all” domain adaptive model bank.

A.2. Details for Neural Architecture Search

Figure 1. Inherited Greedy Search for channel configurations.

Although many neural architecture search methods (e.g.,
enumerate method [1] and genetic algorithms [4]) can be
coupled with our proposed UPEM to search optimal archi-
tectures on the unlabeled target data, we would like to pro-
vide more technique details for the efficient search method
we used in the main text of the paper. As shown in Fig. 1,
we present the search method for channel configurations in-
spired by [12], which we dub as “Inherited Greedy Search”.

Algorithm 1: Stochastic EnsEmble Distillation
input : labeled source data Ds = {(xs

i , y
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model bank (F,Cs, Ct, Ca);
learning rate l;
model batch size m;
domain confusion loss Ldc;
cross-entropy loss Lce;
output: model bank (F,Ca)
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15 end

In the Inherited Greedy Search, the larger optimal mod-
els are assumed to be developed from the smaller optimal
ones. Under this guidance, we obtain optimal models under
different computational budgets from the slimmest to the
widest models in a trip.
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Figure 2. The visualization of the relation of numerous models with different computational complexities on different domain adaptation
tasks. Here we present the results of six adaptation tasks (six columns) on the ImageCLEF-DA dataset and five computational budgets (five
rows) from 1/2× to 1/32×. Each column from left to right presents adaptation task I→P, I→C, P→I, P→C, C→I, and C→P, respectively,
while each row presents one computational budget on six adaptation tasks. In each sub-figure, we present the accuracy relation of 100
randomly-sampled models, and the red dot denotes our searched one, which is superior to most of the candidate models.

methods FLOPs plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean

Source only 1× 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
Stand-alone MCD 1× 86.6 42.9 77.6 76.7 69.0 30.6 73.8 70.2 68.6 60.5 68.6 9.7 61.2

SlimDA with MCD 1× 94.3 77.9 84.7 66.0 91.9 71.0 88.7 75.8 91.2 77.8 86.4 36.3 78.5
1/2× 94.0 77.7 84.5 65.5 91.7 70.9 88.6 75.6 90.9 77.7 86.4 36.2 78.3
1/4× 93.7 77.6 84.3 65.4 91.5 70.6 88.4 75.3 90.8 77.7 86.4 36.1 78.1
1/8× 93.6 77.7 84.2 65.5 91.6 70.6 88.5 75.5 90.5 77.4 86.4 36.1 78.1

1/16× 93.5 77.5 84.2 65.5 91.7 70.6 88.3 75.4 90.6 77.5 86.3 36.0 78.1
1/32× 93.3 77.3 84.0 65.1 91.7 70.9 88.1 75.1 90.6 77.7 86.3 35.6 78.0
1/64× 93.5 77.0 83.9 64.9 91.6 70.5 88.1 74.9 90.6 77.1 85.7 34.9 77.7

Table 1. Comparison among models with different FLOPs in SlimDA on VisDA datasets. We report the accuracy for each class. Moreover,
“mean” indicates the average value among 12 per-class accuracy.

Specifically, we begin with the slimmest model (the
1/64× FLOPs model) and set it as our initial model for
searching. Then we divide the FLOPs gap (F ) between the
slimmest and the widest models into k parts equally. In this
way, we can search the optimal models under different com-
putational budgets from the slimmest and the widest models
in k-1 steps with steady FLOPs growing. In the first step,
we sample q models by randomly adding the channels to

each block of the initial model to fit the incremental FLOPs
(F/k), and then we leverage UPEM to search the optimal
model among q models in this step. In the next step, we use
the previous searched model as the initial model to repeat
the same process in the first step, and we call this sampling
method “Inherited Sampling”. Benefited from the Inherited
Greedy Search, we can significantly reduce the complexity
of the search process.



Methods FLOPs I→ P P→ I I→ C C→ I C→ P P→ C Avg. ∆

SlimDA 1× 79.2 92.3 97.5 91.2 76.7 96.5 88.9 –
1/2× 79.0 92.3 97.3 90.8 76.8 96.2 88.7 0.2↓
1/4× 79.0 92.2 97.3 90.8 77.2 96.3 88.8 0.1↓
1/8× 78.7 91.7 97.2 90.5 75.8 96.2 88.4 0.5↓

1/16× 78.8 91.5 97.3 90.2 76.0 96.2 88.3 0.6↓
1/32× 78.2 90.5 96.7 89.3 72.2 96.0 87.2 1.7↓
1/64× 78.3 90.7 95.8 88.3 71.8 94.8 86.6 2.3↓

Inplaced Distillation 1× 78.0 87.8 94.2 90.3 75.7 91.8 86.3 -
1/2× 77.1 87.0 94.0 89.0 74.0 90.9 85.3 1.0 ↓
1/4× 76.3 86.3 93.5 87.7 72.6 89.7 84.3 2.0↓
1/8× 75.5 84.8 92.9 85.5 70.9 89.3 82.7 3.6↓

1/16× 73.3 82.6 91.5 83.9 68.0 87.4 81.2 5.1↓
1/32× 71.1 81.0 90.5 82.2 66.5 86.5 79.6 6.7↓
1/64× 70.0 80.3 90.2 81.5 65.8 86.2 79.0 7.3↓

Table 2. Comparison with Inplaced Distillation on ImageCLEF-DA dataset. The model batch size is set to 10 for both methods. “∆”
means the averaged performance gap between 1× FLOPs of ResNet-50 and other models, respectively. Note that “∆” is calculated for
SlimDA and Inplaced Distillation, respectively.

Method mean acc. Method mean acc.

ResNet-50 [6] 52.1 CDAN [9] 70.0
DANN [3] 57.4 MDD [21] 74.6
DAN [10] 61.6 GVB-GD [2] 75.3
MCD [15] 69.2 SHOT [6] 76.7
GTA [16] 69.5 SHOT++ [7] 77.2

1× FLOPs in SlimDA 78.5 1/64× FLOPS in SlimDA 77.7

Table 3. Comparison with different UDA methods on the VisDA
dataset. Note that the network backbone is set ResNet-50 in this ta-
ble. “1× FLOPs in SlimDA” and “1/64× FLOPs in SlimDA” mean
the models with 1× and 1/64× FLOPs of ResNet-50 in SlimDA,
respectively. “mean acc.” means the averaged accuracy among 12
per-class accuracies.

Methods I → P P → I I → C C → I C → P P → C Overall
stand alone 1× 0.11H 0.11H 0.11H 0.11H 0.11H 0.11H 0.66H

SlimDA 0.63H 0.67H 0.60H 0.65H 0.63H 0.67H 3.85H

Table 4. Analysis for training time on ImageCLEF-DA. We re-
port the number of hours on one V100 GPU for training the stand-
alone ResNet-50 model and our SlimDA framework with SymNet.
“Overall ” means the total training time for 6 adaptation tasks.

s 1× 1/4× 1/16× 1/64×
1.0 88.3 88.2 87.5 85.7
0.5 88.3 88.2 87.9 86.1
0.1 89.0 88.9 88.4 86.5
0.0 88.9 88.8 88.3 86.6

Table 5. Ablation study of s in Eq.1.

B. Additional Experiments and Analysis

B.1. Additional Experiments on VisDA

We also report the results of our SlimDA on the large-
scale domain adaptation benchmark, VisDA [13], to evalu-

ate the effectiveness of our SlimDA. VisDA is a challeng-
ing large-scale image classification benchmark for UDA. It
consists of 152k synthetic images rendered by the 3D model
with annotations as source data and 55k real images without
annotations from MS-COCO [8] as target data. There are 12
categories in VisDA. There is a large domain discrepancy
between the synthetic style and real style in VisDA. We
follow the network configuration and implementation de-
tails from the experiments on ImageCLEF-DA [11], Office-
31 [14], and Office-Home [17] as described in the main text
of the paper.

As shown in Table 1, our SlimDA can simultaneously
boost the adaptation performance of models with different
FLOPs. It can be observed that the model with 1/64 FLOPs
of ResNet-50 [5] merely has a drop of 0.8% on the mean
accuracy. In addition, from Table 3, we can observe that our
SlimDA with only 1/64× FLOPs can surpass other SOTA
UDA methods by a large margin. Overall, our SlimDA can
achieve impressive performance for the large-scale dataset
with significant domain shifts such as VisDA.

B.2. Additional Analysis

Comparison with Inplaced Distillation. Inplaced Dis-
tillation [18–20] is an improving technique provided in
slimmable neural network [18]. With Inplaced Distillation,
the largest model generates soft labels to guide the learning
of the remaining models in the model batch. However, it
cannot remedy the issue of uncertainty brought by domain
shift and unlabeled data. We combine Inplaced Distillation
with SymNet [22] straightforwardly as another baseline. As
shown in Table 2, we can observe that Inplaced Distillation
leads to negative transfer for the model with 1× FLOPS.
Moreover, the performance of models with fewer FLOPs
is limited with Inplaced Distillation. Compared with



Inplaced Distillation, our SlimDA can bring performance
improvements consistently under different computational
budgets. In addition, the smallest model with 1/64×
FLOPs in SlimDA surpasses the corresponding counterpart
in Inplace Distillation by 7.6% on the averaged accuracy.
Furthermore, even comparing the smallest model in our
SlimDA to the largest one in Inplaced Distillation, the
model can still achieve improvement of 0.3% on the
averaged accuracy.

Additional analysis for UPEM. We provide additional
analysis for the effectiveness of our proposed UPEM.
As shown in Fig.2, we visualize the relation between
accuracy and UPEM with different adaptation tasks and
computational budgets on the ImageCLEF-DA dataset.
The accuracy of 100 models with different network
configurations under the same computational budgets
vary a lot, which indicates the necessity for architecture
adaptation. Moverover, the UPEM will have strict negative
correlation with the accuracy for different adaptation tasks
and different computational budgets (the blue lines in 30
sub-figures). Specifically, the models with the smallest
UPEM (the red dots in 30 sub-figures) always have the
top accuracy among models with the same computational
budgets.

Analysis for Time Complexity of SlimDA. As shown in
Table 4, our SlimDA framework only takes about 6× the
time to train a ResNet-50 model alone on imageCLEF-DA
dataset. But SlimDA can improve the performance of
numerous models impressively at the same time. We report
the training time with one NVIDIA V100 GPU.

Analysis for Architecture Configurations. We provide
details of channel configurations for models with different
FLOPs in our SlimDA. As shown in Table 6-9 (in the
last page), we report 30 models with the smallest UPEM
for I→P adaptation task under each FLOPs reduction.
Note that the reported models with different architecture
configurations are trained simultaneously in SlimDA with
6× the time to train a ResNet-50 model alone. Also,
we sample these models from the model bank without
re-training. Otherwise, it is inconceivably expensive and
time-consuming if these model are trained individually.
The numerous models and their impressive performances
reflect that SlimDA significantly remedies the issue of
real-world UDA, which is ignored by previous work.

A More General Method to Determine Model Confi-
dence: A more general formula of Eq.9 in the paper:

gj = 0.5sign(aj)|aj |s + 0.5

aj = 2rj − 1
(1)

where sign(·) is a sign function to produce +1 or -1, and
| · | is to produce an absolute value. If s → 0 or s → 1,
this formula will be specified as Eq.9 in the paper or
gj = rj/

∑
j′ rj′ , respectively. The performances tend to

degrade a bit when s → 1 due to the increasing weights of
the small models for intra-model adaptation and knowledge
ensemble. We find we can roughly set the model confidence
in a hard way as defined in Eq.9 in the paper to achieve
considerable performance.



block1 block2 block3 block4 acc. block1 block2 block3 block4 acc. block1 block2 block3 block4 acc.

210 339 573 1370 79.0 100 341 559 2025 78.7 39 167 774 2048 78.8
96 305 913 1563 78.8 168 201 976 1254 78.8 138 149 725 2044 78.8

147 446 775 931 79.0 139 541 469 1017 78.7 95 480 538 1560 78.7
87 236 1177 966 78.8 95 231 1193 852 78.7 78 458 588 1649 78.7
46 380 860 1564 78.8 193 357 821 849 78.8 79 556 529 1176 79.0

125 260 507 2048 78.8 108 233 1115 1119 79.0 125 228 671 2048 79.2
81 544 707 830 78.8 262 319 527 846 79.2 196 392 632 1151 79.0

125 332 819 1550 79.0 176 336 869 1011 79.0 299 214 261 1063 78.5
82 414 685 1674 78.8 239 354 489 1111 79.2 230 228 572 1527 78.8

118 353 641 1822 78.7 75 159 1149 1346 78.8 64 442 680 1616 79.0

Table 6. Architecture configurations for the I→P adaptation task on ImageCLEF-DA. We report the architecture configurations for models
with 1/2× FLOPs of ResNet-50 in SlimDA. We report 30 models with the smallest UPEM. [“block1”→ “block4”] represents the channel
number for each block consisting of layers with the same spatial resolution of feature maps.

block1 block2 block3 block4 acc. block1 block2 block3 block4 acc. block1 block2 block3 block4 acc.

74 241 598 970 79.0 38 242 489 1293 79.0 101 98 779 654 78.5
92 113 415 1492 78.7 134 222 353 1099 78.8 113 250 252 1260 79.2
95 137 472 1373 79.0 114 129 307 1479 78.8 90 249 577 902 78.8
63 130 566 1361 79.2 92 152 254 1578 78.5 134 149 557 951 79.0

182 149 308 898 79.0 49 261 643 873 79.0 48 319 404 1112 79.0
142 207 514 790 78.8 104 354 297 775 78.8 154 192 208 1174 79.0
63 130 555 1380 79.2 86 200 666 876 79.0 67 334 440 899 78.8

180 141 359 869 78.8 95 195 705 692 79.0 63 136 777 834 78.8
87 195 736 628 79.0 139 272 459 633 78.8 115 110 662 926 79.0
45 367 450 754 78.8 87 323 427 878 78.8 149 109 660 547 79.0

Table 7. Architecture configurations for the I→P adaptation task on ImageCLEF-DA. We report the architecture configurations for models
with 1/4× FLOPs of ResNet-50 in SlimDA. We report 30 models with the smallest UPEM.

block1 block2 block3 block4 acc. block1 block2 block3 block4 acc. block1 block2 block3 block4 acc.

52 142 387 685 78.7 42 189 325 673 78.5 66 86 286 915 78.7
67 140 385 605 79.0 93 122 316 615 78.8 90 126 350 549 78.5
52 160 367 667 78.8 73 171 302 628 78.8 112 100 244 602 78.5
48 173 399 554 78.7 81 154 381 425 79.2 45 90 497 564 78.8
41 150 418 631 78.7 63 124 412 624 78.7 48 85 486 600 78.7
52 117 504 401 78.8 108 79 286 624 78.5 92 115 280 703 78.5
58 161 177 899 79.0 39 81 485 650 78.8 68 102 179 987 78.3
55 83 492 541 78.7 57 198 333 533 79.0 69 202 341 375 78.7
41 70 413 835 78.3 69 169 410 367 78.0 39 228 199 690 78.8
43 86 225 1063 78.2 101 83 330 599 78.3 71 223 198 544 78.7

Table 8. Architecture configurations for the I→P adaptation task on ImageCLEF-DA. We report the architecture configurations for models
with 1/8× FLOPs of ResNet-50 in SlimDA. We report 30 models with the smallest UPEM.

block1 block2 block3 block4 acc. block1 block2 block3 block4 acc. block1 block2 block3 block4 acc.

41 83 136 477 78.2 45 88 138 435 78.0 37 82 241 298 77.8
49 85 143 407 76.8 32 77 163 505 77.3 35 73 157 507 77.2
36 132 139 284 78.7 32 64 284 257 78.5 53 77 140 406 77.8
53 99 151 297 78.0 36 136 134 268 77.8 33 113 192 311 78.0
53 103 150 279 78.2 32 64 132 564 77.3 39 85 198 391 77.3
48 95 194 273 77.8 51 74 183 360 77.7 53 81 189 297 76.8
46 89 140 423 77.8 46 97 173 338 76.8 40 132 130 267 78.2
41 64 128 529 77.2 59 72 142 366 77.5 49 103 135 350 77.7
42 82 134 480 77.5 40 92 213 323 77.8 37 68 152 517 77.2
54 65 178 374 76.0 34 128 137 328 78.3 65 81 128 284 79.2

Table 9. Architecture configurations for the I→P adaptation task on ImageCLEF-DA. We report the architecture configurations for models
with 1/32× FLOPs of ResNet-50 in SlimDA. We report 30 models with the smallest UPEM.
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