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In this supplementary, we introduce details about the
depth map fusion procedure and provide more qualitative
results regarding the ablation study and the overall perfor-
mance of the proposed model.

1. Depth map Fusion

As indicated in the main paper, after obtaining the fi-
nal depth maps of a scene, we filter and fuse depth maps
into one point cloud. The final depth maps are generated
from center points of the selected bins of the final stage.
We consider both the photometric and the geometric con-
sistency for depth map filtering. The geometric consis-
tency is similar to MVSNet [8] measuring the depth consis-
tency among multiple views. The photometric consistency,
however, is different. The probability volume P is consid-
ered to construct the photometric consistency, following R-
MVSNet [9]. As the probability volume is the classifica-
tion probabilities for the depth hypotheses, it measures the
matching quality of these hypotheses. Since the proposed
method consists of K stages, we can obtain K probability
volumes, i.e. {Py|k = 1,..., K'}. For each pixel p, its pho-
tometric consistency from its K probabilities can be calcu-
lated as follows:

K’

1
Ph(p) = 75 >_max{Px(j,p)lj = 1,... D}. (1)
k=1

Where Ph(p) is the photometric consistency of pixel p; D
is depth hypothesis number; The max operation obtains the
classification probability of a selected hypothesis; K is the
maximum stage considered in photometric consistency and
1 < K’ < K. Equation 1 actually computes an average
of the probabilities of the K stages. In practice, when the
maximum stage number K = 8, we set K’ = 6. It means
that we take the average probability of the first 6 stages as
the score of the photometric consistency. In our multi-stage
search pipeline, as the resolutions of probability volumes
are different, we upsample them to the maximum resolution
of stage K before the computation. After producing the

photometric consistency score for each pixel, the depths of
pixels are discarded if their consistency scores are below a
threshold.

Figure 1a in the supplementary shows the results of each
stage of a sample in the DTU dataset [2]. The depth map
in each stage consists of the center-point depth values of
selected bins. The quality of these depth maps can be im-
proved quickly, demonstrating a fast search convergence of
our method. The valid mask maps represent valid pixels in
each search stage. Note that these mask maps are combined
with the ground-truth mask maps from the dataset, and thus
the background pixels are not considered. The photometric
consistency (Photo. Consi.) map in stage k is computed
using Equation 1 by setting K’ = k. As shown in the
Figure la, the photometric consistency maps is an effec-
tive measurement of depth map quality. As shown in Fig-
ure 1b, the photometric consistency (Photo. Consi.) maps
from Stage 6 are used to filter the final depth maps produced
from Stage 8. The filtered depth maps are further refined by
geometric consistency map, and finally fused into one point
cloud. Figure 2 also shows qualitative results of a sample
from the Tanks and Temples [4] dataset. The background of
this image is far away from the foreground and is out of the
depth range, so the MVS methods predict outlier values for
the background pixels. Using the photometric consistency
maps, we can effectively filter out these outliers.

2. Evaluation on ETH3D dataset

We perform additional experiments on ETH3D [1]. Our
model results are shown in Table 1, comparing with the best
results of other methods obtained from the leaderboard [ 1],
where our evaluation is named as GBi-Net. Although the
ETH3D dataset is challenging, our method can still produce
clearly better results compared to both traditional and com-
petitive learning-based MVS methods.



Table 1. Evaluation results on the training and test splits of ETH3D
multi-view benchmark (F1 score, higher is better).

Methods Training T Test
Gipuma [3] 36.38 45.18
COLMAP [5] 67.66 73.01
PVSNet [7] 67.48 72.08
PatchmatchNet [6] 64.21 73.12
Ours 70.78 78.40

3. More Visualization Results

We show more qualitative results of the proposed model
in this section. Figure 3 and Figure 5 show several images
and their corresponding depth maps in DTU dataset [2] and
Tanks and Temples dataset [4] respectively. The depth maps
are filtered by photometric consistency. Figure 4 and Figure
6 shows several point clouds of our method in DTU dataset
[2] and Tanks and Temples dataset [4] respectively.
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Figure 1. (a) The predicted depth maps, valid mask maps and photometric consistency (Photo. Consi.) maps in all the stages of a sample
in DTU [2]. (b) The input image, final predicted depth map of Stage 8, photometric consistency (Photo. Consi.) map of Stage 6, filtered
depth map by photometric consistency, ground truth depth map and fused point cloud.
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Figure 2. (a) The predicted depth maps and photometric consistency (Photo. Consi.) maps in all the stages of a sample in Tanks and
Temples [4]. (b) The input image, final predicted depth map of Stage 8, photometric consistency (Photo. Consi.) map of Stage 6 and
filtered depth map by photometric consistency. The background of this image is far away from the foreground and is out of the depth range
so MVS methods will predicted outlier values for background pixels. With the photometric consistency, we can effectively filter out these
outliers.



Figure 3. Examples of images and their corresponding depth maps in DTU dataset [2]. The depth maps are filtered by photometric
consistency.



Figure 4. Point clouds of our method on DTU dataset [2].



Figure 5. Examples of images and their corresponding depth maps in Tanks and Temples dataset [4]. The depth maps are filtered by
photometric consistency.

Figure 6. Point clouds of our method on Tanks and Temples dataset [4].
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