NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images
Supplemental Material

Peter Hedman Ricardo Martin-Brualla Pratul P. Srinivasan Jonathan T. Barron

Google Research

Ben Mildenhall

Contents

1. Potential negative impact 1

2. Additional qualitative results 1

3. Training details 1
3.1. Full derivation of gradient-weighted loss 1
3.2. Weight variance regularizer 4
3.3. Findings with alternate loss functions 4
3.4. Quality limitations 4

4. Data capture and postprocessing details 5
4.1.Datacapture 5
4.2. Recovering camerapose 5
4.3. Postprocessing pipeline 5
4.4. Camera shutter speed miscalibration 6

5. Comparison and ablation details 7
S.1.Runtimes 7
5.2. Real test dataset details 7
5.3. Synthetic Lego dataset details 7

6. Further qualitative ablations 7
6.1. Training with iPhone JPEG inputs 7
6.2. Bayer mosaic mask and sensor artifacts . . . 8

7. Synthetic defocus rendering model 8

8. Scene index 9

1. Potential negative impact

Training any NeRF model for scene reconstruction has
potential negative environmental impact, as current algo-
rithms are very compute-intensive, requiring hours of train-
ing per scene even when run on specialized ML acceler-
ators. This also creates an unfair advantage for research
groups with access to more computational resources. Fu-
ture work will likely address this issue, as it blocks the
widespread practical adoption of these models.

Any image restoration model could potentially be ap-
plied for illicit surveillance purposes. Multi-image denois-
ers provide the additional capability of potentially revealing
details that are not visible in any single image due to noise.
ML-based algorithms further complicate this situation by
potentially “hallucinating” details in ambiguous regions, ei-
ther intentionally (as with generative methods) or uninten-
tionally (in the form of reconstruction artifacts). RawNeRF
has a minimal ability to hallucinate, as it largely works by
simply averaging the input data, but it does occasionally
produce high frequency grid-like patterns due to the bias
induced by positional encoding.

2. Additional qualitative results

We include additional qualitative results for both dark
(Figure 1) and high contrast scenes (Figure 2). We urge
the reader to view our supplemental video as the results are
more compelling when animated.

3. Training details
3.1. Full derivation of gradient-weighted loss

We wish to approximate the effect of training with the
following loss

Ly(§,y) = Y ($(0:) — () (1)

i

while converging to an unbiased result. This can be accom-
plished by using a locally valid linear approximation for the
error term:

V(Gi) — (i) = () — (0(Gi) + " (9:) (yi — 5:))
=" (9:) (G — vi) - 2

Note that we choose to linearize around ¢; because, unlike
the noisy observation y;, ¢; tends towards the true signal
value z; = E[y;] over the course of training.

If we use a weighted L2 loss, then as we train the net-
work we will have §; — E[y;] = z; in expectation (where

I

T i
(T

Noisy test image RawNeRF rendering New viewpoint, HDR tonemapping

Figure 1. RawNeRF in the dark.

, HDR tonemapping

New viewpoint

RawNeRF rendering

Noisy test image

Figure 2. Examples of scenes with very high dynamic range.

x; is the true signal value). This means that the terms
summed in our gradient-weighted loss

Ly(y) = [(se(@) (@ —)] 3)

%

will tend towards ¢’ (z;) (§; —y;) over the course of training.
Additionally, we note that the gradient of our reweighted
loss 3 is a linear approximation of the gradient of the
tonemapped loss 1:

DR
:ZQ
NZQ

VoLy(9,y) U(yi))?)
V(Y)Y (9:)Voyi Q)

—y))¥' (9i)Veyi (6)

= Z 2() —)0 (s8(5:)) Vous
@)
= VoLy(9,y)- ®)

In line 6 we substitute the linearization from 2, and in line 7
we exploit the fact that a stop-gradient has no effect for ex-
pressions that will not be further differentiated.

3.2. Weight variance regularizer

Our weight variance regularizer is a function of the com-
positing weights used to calculate the final color for each
ray. Given MLP outputs c;, o; for respective ray segments
[ti—1,t;) with lengths A; (see [2]), these weights are

w; = (1 —exp(—A;0;)) exp

D)

i<i
If we define a piecewise-constant probability distribution

Pw over the ray segments using these weights, then our vari-
ance regularizer is equal to
Ly, = Varx.p, (X) =Exp, [(X —E[X])?] (10)

Calculating the mean (expected depth):

Exepw|X Z/ —tdt (11)
ti—1
w; t2 - t2 1
= N S 12
A, 2 (12)
— wi%. (13)

We will denote this value as ¢. Calculating the regularizer:

Vary.p, (X) = Ex~pw [(X — E[X])?] (14)

=2
3 3
-y % (t; — 1) 73(752-_1 —1) 16)

4 (=) (tior — 1) + (tios —)7

-— t—t ?at (15)

tz1

(tl _E)Q % 7
Sy
- 3
(17)

We apply a weight between 1 x 1072 and 1 x 107! to
L, (relative to the rendering loss), typically using higher
weights in noisier or darker scenes that are more prone to
“floater” artifacts. Applying this regularizer with a high
weight can result in a minor loss of sharpness, which can
be ameliorated by annealing its weight from O to 1 over the
course of training.

3.3. Findings with alternate loss functions

In practice, we directly scale our loss by the derivative of
the desired tone curve:

1
sg(9i) + €

We performed a hyperparameter sweep over loss weightings
of the form (sg(g;) + €)™ P for e and p and found that ¢ =
1 x 1072 and p = 1 produced the best qualitative results.

We also experimented with using a reweighted L1 loss
or the negative log-likelihood function of the actual cam-
era noise model (using shot/read noise parameters from
the EXIF data) but found that this performed worse than
reweighted L2. RawNeRF models supervised with a stan-
dard unweighted L2 or L1 loss tended to diverge early in
training, particularly in very noisy scenes.

We tried using the unclipped sRGB gamma curve (ex-
tended as a linear function below zero and as an exponential
function above 1) in our loss, but found that it caused many
color artifacts in dark regions. Directly applying our log
tone curve (rather than reweighting by its gradient) before
the L2 loss caused training to diverge.

V' (sg(9:) = (18)

3.4. Quality limitations

As briefly mentioned in the main text, our method
cannot scale to arbitrary amounts of noise in real world
scenes. For our darkest nighttime scenes, we often must
run COLMAP [5] multiple times (varying the random seed)
or tune its parameters to obtain camera poses. Even when
COLMAP reports a successful reconstruction, the results
are sometimes poorly aligned at image corners, where the
distortion model used for camera intrinsics may not fit well.

RawNeRF itself is prone to reconstruction artifacts in
very noisy scenes or scenes captured with few images (un-
der 30), typically in the form of positional encoding grid-
like artifacts. These artifacts are often more evident in
videos than in still frames. In regions that are essentially
pure noise and no signal, RawNeRF sometimes produces
a foggy “cloud”, since no multiview information exists to
guide its recovery of geometry.

The near and far plane bounds calculated using the point
cloud from COLMAP are sometimes wider than the true
bounds of the scene. Using these bounds wastes many sam-
ples at the front of each ray, which reduces sharpness and
can cause additional “floater” artifacts. We therefore some-
times retrain RawNeRF models using tighter depth bounds
than those reported by COLMAP.

We found it necessary to use gradient clipping due to
the high level of noise in the data we use for supervision.
Certain losses (such as standard L2) are prone to produc-
ing NaN gradient values and require careful tuning of the
clipping values. We found our reweighted loss to be more
stable.

4. Data capture and postprocessing details
4.1. Data capture

We captured all images using a 2017 iPhone X with the
Halide app' and a 2020 iPhone SE with the Adobe Light-
room app. We used manual modes in both apps with focus
and ISO level fixed for each capture, manually adjusting
shutter speed to achieve an exposure with no clipped high-
lights (except in scenes with varying exposure) and mini-
mal motion blur (at least 1/100s when possible). At night,
it was usually necessary to use the maximum ISO level (ap-
proximately 2000 on the iPhones) to achieve minimal mo-
tion blur. Each capture took around 10-200 seconds, except
for the denoising test scenes. All raw images are stored as
Adobe DNG?” files.

We extract the following parameters from the EXIF
metadata using exiftool:

Variable EXIF field name # values
w WhiteLevel 1

b BlackLevel 1
Jwb AsShotNeutral 3
Ceem ColorMatrix2 3x3
t ShutterSpeed 1

The color correction matrix Cicpp, is an XYZ-to-camera-
RGB transform under the D65 illuminant, so we use the

'https://halide.cam/
2https : / /www . adobe . com/ content /dam/acom/en /
products/photoshop/pdfs/dng_spec_1.4.0.0.pdf

corresponding RGB-to-XYZ matrix’:

0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750 | (19)
0.0193339 0.1191920 0.9503041

Crgb-xyz =

We use these to create a single color transform Cj,;; mapping
from camera RGB directly to standard linear RGB space:

Can = rownorm((Crgb-xyzCoem) 1) (20)

where rownorm normalizes each to sum to 1.
We use the standard sSRGB gamma curve as a basic
tonemap for linear RGB space data:

12.92z z < 0.0031308

1.05521/24 —0.055 2 > 0.0031308
2y

%RGB(Z) = {

4.2. Recovering camera pose

For each scene, we run COLMAP [5] to recover per-
image extrinsic poses and a single shared set of intrinsic
parameters. We use the post-processed JPEGs produced by
the default pipeline in the Halide app (or Lightroom app for
the iPhone SE) by using the “RAW+JPEG” capture mode.
Given that these camera apps are commercial software, we
do not know exactly what postprocessing is applied. How-
ever, unlike our own minimal postprocessing pipeline, these
apps apply some amount of denoising or smoothing to the
images which likely aids COLMAP’s feature extraction and
matching steps. For particularly noisy scenes, we some-
times find it necessary to run COLMAP multiple times be-
fore the bundle adjustment succeeds (this varies the random
seed used to initialize the matches for the sparse 3D model).
In the case of variable exposure, we directly use the JPEGs
as they come out of the app, as is typically done when run-
ning structure from motion on datasets captured with auto-
exposure, since the extracted image features are robust to
changes in brightness.

4.3. Postprocessing pipeline

Our exact postprocessing pipeline for converting raw im-
ages to postprocessed SRGB space is detailed below.

1. Load 12-bit raw data using rawpy.
2. Cast to 32-bit floating point.

3. Rescale so that the black level is 0 and the white level
is 1, preserving values below zero. (The result here is
used to train RawNeRF.)

z—0b
w—>b

3http://www.brucelindbloom.com/index.html?Eqn_
RGB_XYZ_Matrix.html

z 22)

https://halide.cam/
https://www.adobe.com/content/dam/acom/en/products/photoshop/pdfs/dng_spec_1.4.0.0.pdf
https://www.adobe.com/content/dam/acom/en/products/photoshop/pdfs/dng_spec_1.4.0.0.pdf
http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html

4. Apply bilinear demosaicking (when necessary).

5. Apply elementwise white balance gains.

e 2 (23)
9wb

6. Apply a color correction matrix (from camera RGB to
canonical XYZ) and XYZ-to-RGB matrix, combined
into a 3 x 3 transformation.

AR Canz (24)

7. Adjust the exposure to set the white level to the p-th
percentile (p = 97 by default).

z
_— 25
percentile(z, p) 25)

8. Clip to [0, 1].
z « clip(z,0,1) (26)

9. Apply the sSRGB gamma curve to each color channel.
Z < YsraB(2) 27

When applying a different tonemapping algorithm, we take
the color corrected output from step 6 and pass it through
the alternate method, while tuning exposure and other
tonemapping parameters manually per scene.

4.4. Camera shutter speed miscalibration

In Section 4.2 of the main text, we discuss our implemen-
tation of a learned per-color-channel scaling to account for
miscalibration when using variable exposure inputs. Here,
we document this miscalibration effect for completeness.

Figure 3 plots data taken from a “sweep”” over many shut-
ter speeds. The 2017 iPhone X (used for most data capture
in the paper) is held fixed on a tripod, all other parameters
(focus, ISO, white balance, etc.) are held fixed, and shut-
ter speeds are sampled roughly logarithmically from 1/100
to 1/10000 seconds. We ensure that no pixels are saturated.
To minimize the effect of image noise, we study the average
color value s, for each Bayer filter channel (R, G1, G2, B)
over the entire 12MP sensor. Specifically, we plot:

c
yt,; tmax

. c
b Yias

(28)

which is the ratio of normalized brightness at speed ¢; to
normalized brightness at the longest shutter speed ¢,,ax-
In the case of perfect calibration, this should be equal to
1 everywhere since dividing out by shutter speed should
perfectly normalize the brightness value. However, from
Figure 3 we see that not only does this quantity decay for

Black level = 527

Black level = 528
1.004 1.00

Black level = 529

0.754 0.75

0.50 4 0.50

0.25 4 0.25

T T 0.00 ~rrf T 0.0~ u
1074 1072 1072 104 1072 1072 10~ 1072 1072

Shutter speed (log scale) Shutter speed (log scale) Shutter speed (log scale)

Figure 3. Camera shutter speed miscalibration. We plot normal-
ized brightness for each Bayer color channel, relative to its value
at the longest shutter speed. For a perfectly calibrated sensor, these
lines would all be at a constant height of 1. We show plots using
both the true black level (528) and surrounding values.

(a) Fast shutter (b) Fast shutter, corrected (c) Slow shutter

Figure 4. (a) Fast and (c) slow captures of the festyucca scene,
with brightness normalized by shutter speed (heavily downscaled
to minimize noise). These two images should match perfectly,
but have a perceptible color difference due to the miscalibration
documented in Section 4.4 and Figure 3. (b) In the center, we
show a version of (a) with per-channel rescaling in the raw domain
to match the global color balance of (c).

faster shutter speeds, it decays at different rates per color
channel. To preempt concerns that this problem is due to
black level miscalibration, we include the plot based on the
correct black level 528, as well as the surrounding values,
which shows that this problem is only worsened by shift-
ing the black level higher or lower. Note that black level is
an integer on the scale of 0 to 4095 (since this is a 12-bit
Sensor).

We show an example of the resulting qualitative color
shift in Figure 4 using images from one of our three real
test scenes. Here the two shutter speeds are 1/1104 and
1/181 seconds, and the relative color shift from the slow
to the fast channel is calculated to be (0.89,0.93,0.75) for
red, green, and blue in the raw domain. The effect of undo-
ing this shift before postprocessing is shown in Figure 4b.
This miscalibration is another reason for primarily reporting
affine-aligned metrics on our real test set, since we cannot
rely on perfect color alignment between the input noisy im-
age and the clean ground truth frame.

We do not fully understand the cause of this issue. We
speculate that it could be due to the sensor temperature
changing over the course of capture, imprecise shutter speed
timing for very fast exposures, or any number of other fac-
tors related to low level sensor hardware. Given that the
effect exists and affects our captures in an unmeasurable
manner, it must be accounted for. Using a DSLR or mirror-

UDVD
229.2

‘Unproc. SID RViDeNet
Time (sec) | 1.8 4.0 65.1

Table 1. Time required for compared methods to denoise a single
frame. RawNeRF is run on different hardware and requires about
25 seconds of render time per frame (see details in Section 5.1).

less camera with a better sensor may avoid this issue.

5. Comparison and ablation details
5.1. Runtimes

Each scene requires about 12 hours of training for Raw-
NeRF (same as mip-NeRF) and rendering a 12MP output
image takes about 25 seconds, running on 16 TPU v2 ac-
celerators. In Table 1, we list timings for the compared
methods to denoise one 12MP frame, running on a single
NVIDIA GTX 1080 GPU. We use the publicly available
model weights for each compared method; these presum-
ably require hours or days to train, but this step must only
be performed once (in comparison to NeRF, which is opti-
mized from scratch for every scene).

5.2. Real test dataset details

Affine alignment As mentioned in the main text, we
solve for an affine color alignment between each output and
the ground truth clean image. For all methods but SID and
LDR NeREF, this is done directly in raw Bayer space for each
RGGB plane separately. For SID and LDR NeRF (which
output images in tonemapped sRGB space), this is done for
each RGB plane against the tonemapped sRGB clean im-
age. If the ground truth channel is = and the channel to be
matched is y, we specifically compute

7y -7y _ Covl(z,y)
a 1-2 — EQ Var(a:)) ()

b=7—aT (30)

to get the least-squares fit of an affine transform ax +b ~ y
(here Z indicates the mean over all elements of z). We then
apply the inverse transform as (y — b)/a to match the es-
timated y to z. In the case where matching happens in the
raw domain, we postprocess (y — b)/a through our stan-
dard pipeline (Section 4.3) before calculating SRGB-space
metrics.

Compared baselines We provide an overview of each
baseline and the pre- and post-processing pipelines used in
the main text. Unprocessing [3] is the only method that is
a “non-blind” denoiser, and therefore requires a per-pixel
noise level as input. We calculate this by using the empiri-
cal per-pixel variance from our tripod-aligned fast and clean

Simulated shutter speed (seconds)
Method ‘ 00 1/7 1/15 1/30 1/60 1/120 1/240
Noisy input - 20.16 1690 13.81 10.83 8.06 5.95
LDR NeRF | 38.06 24.66 2139 1827 1531 1247 10.13
RawNeRF | 36.85 36.82 36.65 3627 35.62 3433 32.37

Table 2. Unmasked LDR sRGB PSNRs for the ablation study on
our synthetic Lego scene data.

images to estimate shot and read noise parameters as a best-
fit 1D affine transform mapping from clean signal values to
empirical variances. Each method required its own relative
input rescaling and clipping convention, which we set based
on each authors’ source code.

5.3. Synthetic Lego dataset details

In the synthetic Lego dataset, we did not include the ef-
fects of remosaicking/demosaicking or quantization when
unprocessing/reprocessing the data. We wanted the “infi-
nite” shutter speed case to be perfectly clean, with no degra-
dation resulting from unprocessing and reprocessing in the
absence of noise, thus providing an upper bound on pos-
sible performance. This example does not particularly test
the ability of RawNeRF to encode high dynamic range since
the object is diffusely lit, resulting in fairly dim highlights
and negligible clipping; instead, it focuses on robustness to
noise.

We rendered new randomly sampled images of the scene
using the Blender file* provided by the NeRF authors [4],
saving the resulting linear space color data in EXR format.
There are 120 images in the training set and 40 images in
the test set. Note that metric values on this data are not
comparable to metrics on the original scene, since it uses
images from different random poses generated using a dif-
ferent postprocessing pipeline.

For completeness, we report the unmasked PSNR values
for this experiment in Table 2 (Table 2 in the main text re-
ports masked PSNR), which is heavily skewed by the LDR
NeRF’s color bias in the black background regions.

6. Further qualitative ablations
6.1. Training with iPhone JPEG inputs

In all LDR NeRF comparisons in the main paper, we use
our own simple postprocessing pipeline to generate LDR
sRGB inputs from the raw data. However, a standard NeRF
implementation would instead use JPEG images directly
from the camera, which have a more sophisticated postpro-
cessing pipeline that likely includes noise reduction and a
more sophisticated nonlinear tonemap to better compress
dynamic range. To satisfy the reader’s potential curiosity, in

“https : / / drive . google . com / file / d /
1RjwxZCUoOP1UgEWIUiuCmMmGOAhuV8A2Q / view ? usp =
sharing

https://drive.google.com/file/d/1RjwxZCUoPlUgEWIUiuCmMmG0AhuV8A2Q/view?usp=sharing
https://drive.google.com/file/d/1RjwxZCUoPlUgEWIUiuCmMmG0AhuV8A2Q/view?usp=sharing
https://drive.google.com/file/d/1RjwxZCUoPlUgEWIUiuCmMmG0AhuV8A2Q/view?usp=sharing

Figure 5. Comparison of training LDR NeRF using sRGB im-
ages either directly from the iPhone camera or from our simplified
pipeline. (a) The JPEG image from the phone is extremely dark,
so we brighten it for visualization (b). We also brighten the re-
sulting LDR NeRF rendering (c), thereby revealing its pervasive
color noise artifacts. When trained on the images from our LDR
processing pipeline (d), LDR NeRF produces a more reasonable
result (e), though the input images’ biased noise distribution still
results in muddy, low contrast dark regions and incorrectly muted
colors. (f) Only RawNeRF accurately recovers the correct colors
and details throughout the scene.

Figure 5 we provide an example of LDR NeRF trained on
iPhone JPEGs versus our LDR images, as well as a Raw-
NeRF result on the same scene.

6.2. Bayer mosaic mask and sensor artifacts

In the main text, we note that we only apply our loss
function to the color channel measured by the Bayer filter
for each ray. (In practice, we render all three colors for
every training ray, then apply a one-hot mask to select the
desired output color.) In Figure 6, we show an example of
the color noise that emerges when supervising all 3 color
channels using bilinearly demosaicked raw images instead
of masking the loss. Perhaps surprisingly, we noted that rel-
atively clean regions of the scene seemed to benefit from us-
ing all 3 channels of a bilinear demosaicked image as super-
vision. However, we concluded that the distracting color ar-
tifacts induced by demosaicking outweighed this occasional
benefit, and opted to use Bayer masking in all scenes.

These artifacts may potentially be caused by broken
“hot” pixels that are always fully saturated, in violation
of our assumed noise distribution. Bilinear demosaicking
would disperse the influence of a hot pixel to many neigh-
boring pixels, potentially increasing its effect on the final
trained NeRF. In preliminary experiments, we did not notice
any benefit to additionally masking hot pixels when apply-
ing a Bayer mask. We did apply a second mask to remove a
4 pixel border from all training images, since many iPhone
raw images contained 1 or 2 entire rows or columns of sat-
urated pixels on one side, particularly in bright scenes.

(a) Full noisy image

Figure 6. Comparison of training with bilinear demosaicking and
no Bayer masking (c), or with a Bayer mask that uses only the
measured raw pixels (d). In image areas with extremely high noise,
we observed unpleasant bright color noise emerge when training
with bilinear demosaicked images in the raw domain.

7. Synthetic defocus rendering model

To render defocused images, we use a similar rendering
model as prior work that has addressed this task [, 6, 7].
To avoid prohibitively expensive rendering speeds, we first
precompute a multiplane image [8] representation from the
trained RawNeRF model. This MPI consists of a series
of fronto-parallel RGBA planes (with colors still in linear
HDR space), sampled linearly in disparity within a cam-
era frustum at a central camera pose. Given this MPI rep-
resentation, our rendering algorithm for synthetic defocus
(including lateral camera translation) is described in Algo-
rithm 1.

Algorithm 1 Synthetic defocus rendering

procedure DEFOCUS(Cpupi, Ctmpi s Hfocus, Dr, Ad)
C+0
for:=0,...,,N —1do
T A |Z - Z'focus|
kpur < blurkernel(r)
Chlur < convolve(c(i) O Ebtur)

mpi mpi’

Qpjur < (:onvolve(oc[(];;i7 Eblur)
d <+ Ad -1
Cirans — translate(cpnr, d)
Qrans <— translate(apyr, d)
C < Cuans + (1 - atrans)o

end for

return C'

end procedure

Here the input MPI planes are indexed from back to
front. ifcys controls the focal plane, A, controls the simu-
lated aperture size (defocus strength), and A, (a 2D vector)
controls the camera translation parallel to the image plane.
blurkernel(r) returns a circular mask at the origin with ra-
dius 7 pixels. blurkernel is implemented as a 2D Fourier
space convolution, and translate is a continuous 2D image

translation (using bilinear resampling). Note that the color

is ¢

‘premultiplied” by alpha before blurring, which is why

alpha is not applied to ¢y in the accumulation step for C.

8. Scene index

We provide various details about each scene shown in

the paper and video in Table 3.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

Jonathan T. Barron, Andrew Adams, YiChang Shih, and Car-
los Herndndez. Fast bilateral-space stereo for synthetic defo-
cus. CVPR,2015. 8

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-NeRF: A multiscale representation for anti-aliasing neu-
ral radiance fields. ICCV, 2021. 4

Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dil-
lon Sharlet, and Jonathan T. Barron. Unprocessing images for
learned raw denoising. CVPR, 2019. 7

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view synthe-
sis. ECCV, 2020. 7

Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. CVPR, 2016. 4, 5

Neal Wadhwa, Rahul Garg, David E. Jacobs, Bryan E. Feld-
man, Nori Kanazawa, Robert Carroll, Yair Movshovitz-Attias,
Jonathan T. Barron, Yael Pritch, and Marc Levoy. Syn-
thetic depth-of-field with a single-camera mobile phone. SIG-
GRAPH, 2018. 8

Xuaner Zhang, Kevin Matzen, Vivien Nguyen, Dillon Yao,
You Zhang, and Ren Ng. Synthetic defocus and look-ahead
autofocus for casual videography. SIGGRAPH, 2019. 8
Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view syn-
thesis using multiplane images. SIGGRAPH, 2018. 8

Scene Figures Video Images Shutter speed (s™!) ISO Time of day
candle 1 0:00, 1:45 173 45,119 2000 20:21
% | livingroom 2 50 1429 800 15:14
E stove 4 3:33 106 139, 258, 1621 2000 20:17
§ windowlegovary 5, 8d 4:28 104 432,16129, 16393 500 10:29
gardenlights 8a-c 5:39 91 50 1600 23:53
S | pianotest 6, 8e 5:25 103 145, 207 2000 22:08
«; officetest 6 113 110, 249 2000 17:43
= yuccatest 6, A4 102 181, 1104 800 13:09
streetcorner Ala, AS 2:35 57 123 2000 22:19
candlefiat Alb 4:15 52 97 2000 00:33
nightstreet Alc 49 82 2000 23:04
g | parkstatue Ald 5:13 51 124 2000 23:14
.'g bikes Ale 3:21 45 62 2000 22:22
g | twostatue A2a 4:52 86 239 20 11:32
S | choir A2b 4:03 28 112 50 11:50
§ | stainedglass A2c 5:02 43 155 32 11:46
E onestatue A2d 4:42 40 112 25 11:51
& | sharpshadow A2e 36 8130 32 13:35
a morningkitchen A2f, A6 53 110 2000 08:18
scooter 3:08 54 107 2000 19:27
notchbush 3:44 63 95 2000 22:15

Table 3. A summary of image metadata for our scenes. Figure from the supplement are indicated using the prefix “A”.

	. Potential negative impact
	. Additional qualitative results
	. Training details
	. Full derivation of gradient-weighted loss
	. Weight variance regularizer
	. Findings with alternate loss functions
	. Quality limitations

	. Data capture and postprocessing details
	. Data capture
	. Recovering camera pose
	. Postprocessing pipeline
	. Camera shutter speed miscalibration

	. Comparison and ablation details
	. Runtimes
	. Real test dataset details
	. Synthetic Lego dataset details

	. Further qualitative ablations
	. Training with iPhone JPEG inputs
	. Bayer mosaic mask and sensor artifacts

	. Synthetic defocus rendering model
	. Scene index

