AutoRF: Learning 3D Object Radiance Fields from Single View Observations

Norman Miiller'3

Matthias NieBner!

Technical University of Munich?

Appendix

A. Implementation details

Encoder. Our encoder is based on a ResNet34 backbone
where we replace all BatchNorm layers with InstanceNorm
layers to support batch size of 1. The first four layers of this
architecture are shared while the following two layers are
replicated to form separate heads for shape and appearance
encoding. For a 3 x H x W image, input for each encoding
head is a feature map of shape 256 x H /16 x W / 16.
These feature maps are passed through the individual heads
and and adaptive max pooling is applied to obtain shape and
appearance codes, each of dimension 128. We rescale the
input images to a maximum of 320px in each dimension
while preserving the aspect ratio.

Shape decoder. The shape decoder is a MLP that is made
of 5 ResNet blocks with hidden dimension 128. At each
layer, we feed the previous feature map and the positional
encoding of the query points. In order to match the dimen-
sionality of the positional encoding with the hidden dimen-
sions of the MLP, we apply a single linear layer and ag-
gregate the output with the intermediate feature maps by a
simple per-channel mean pooling.

Color decoder. For decoding the color, we use a sim-
ilar architecture as for the shape decoder: A MLP of 5
ResNet blocks with hidden dimensionality of 128 and ad-
ditional linear aggregations for additional input: As for the
shape decoder, we aggregate intermediate features with po-
sitional encodings by mean pooling. Furthermore, on the
third layer we pass in the same way the output of the corre-
sponding layer of the shape encoder. This enables the color
decoder to incorporate estimated shape information. On the
final two layers, we pass the view direction (encoded as 3-
dimensional vector) to account for view-dependent effects.

Volumetric rendering. For each ray passing through the
unit cube in the normalized object space, we compute the
intersection segment and uniformly sample 64 points on
this segment. During training, we randomly sample 1024
rays per input image and fix the rendering resolution to
80 x 120px. For the spatial coordinates, we use positional

Andrea Simonelli%?
Peter Kontschieder®

University of Trento?

Lorenzo Porzi® Samuel Rota Bulo?

Meta Reality Labs Zurich?

encoding from NeRF with 6 frequencies. At test time, we
render each sample at a fixed resolution of 64 x 64px.

Hyperparameters. We train at a batch size of 1 and use
the Adam optimizer with a learning of 10~5. For test-time
optimization, we optimize shape, appearance and camera
position using the Adam optimizer at learning rates 0.05,
0.02 and 0.02, respectively, for 32 iterations. We notice that
a higher learning rate for color enables the AutoRF to fo-
cus on mainly adjusting color values while performing only
slight modifications on shape and pose. This way, the op-
timization eschews strong overfitting to the input view and
does not deviate too much from the learnt shape and color
code manifold.

B. Additional ablation results
B.1. Auto-decoder variant of AutoRF

In order to better understand the role of the encoder we
perform further ablation studies by using AutoRF in an
auto-decoder fashion. To do so, we remove the encoder and
only optimize the shape and appearance codes. The initial-
ization of the codes is given by the averages computed on
the training set. We optimize the auto-decoder version of
our method (AutoRF AutoDecoder) for 128 rounds. The
results of these ablations can be found in Tab. 1.

nuScenes cars PSNRT SSIM{T LPIPS| FID|
AutoRF AutoDecoder on test 18.77 0.485 0.231 149.74
AutoRF AutoDecoder on train 18.81 0.487 0.228 134.91

AutoRF on test 18.94 0.491 0.223 145.10
AutoRF on train 18.95 0.493 0.210 106.50

Table 1. Comparison between AutoRF and its auto-decoder vari-
ant (AutoRF AutoDecoder) on nuScenes cars.

We observe that AutoRF AutoDecoder underperforms
on all metrics in comparison with AutoRF. This validates
the choice of having an encoder inside the architecture.
Furthermore, we observe that the speed of convergence in
AutoRF is much faster than its auto-decoder variant. This
might be related to the fact that the encoder provides, in a
single-shot, an already good initial estimate of the codes.

Input view

AutoRF on test AutoRF on train Target view

o
w=e

Figure 1. Comparison of AutoRF trained on nuScenes test im-

ages with machine-generated annotations and AutoRF trained on

nuScenes train images with ground-truth annotations.

Input view PixelNeRF CodeNeRF AutoRF Target view

« b N kb
I dh ks

Figure 2. Qualitative comparison on SRN-chairs trained on single
views.

SRN-Chairs PSNRtT SSIMt LPIPS| FID|

pixelNeRF [41] 17.73 0.726 0.218 162.9
CodeNeRF [15] 18.14 0.763 0.187 137.6

AutoRF (noopt.) 18.08 0.761 0.180 134.3
AutoRF 18.64 0.803 0.148 133.2

Table 2. Evaluation of novel-view synthesis on the SRN-Chairs
dataset from [36].

B.2. Evaluation on other categories

Tab. 2 and Fig. 9, we demonstrate qualitatively and quan-
titatively that AutoRF performs well also on indoor classes,
providing results for SRN-chairs. We follow the same pro-
tocol as described in Section 4.2). We notice that pixelNeRF
tends to produce more fuzzy radiance fields compared to
ours.

B.3. Shape reconstruction

Furthermore, we provide qualitative results of our shape
reconstructions in Figure 3. For this, we create 40 novel
views of the same instance with a camera orbiting around

and facing the object center and apply TSDF-fusion on the
resulting pairs of depth and color images. We observe con-
sistent depth and color images enabling creating of accurate
meshes.

Input view TSDF fusion mesh

AutoRF rendering

Figure 3. Explicit meshing: Given a single input view, we render
depth and color from a multiple views using AutoRF and apply
TSDF-fusion in order to create a 3D mesh.

B.4. Run time

In this section, we provide further details related to the
run time of AutoRF. We observe that the rendering of a
64 x 64 image takes approximately 0.23 seconds. Regarding
test-time optimization, we observed that the rendering of a
32 x 32 image takes approximately 0.11 seconds. Over-
all the test optimization, which is usually made of 32 steps,
takes approximately 3.3 seconds per object.

C. Further details on the creation of nuScenes
novel view data

We train and evaluate on nuScenes, a data set consist-
ing of 168k training images, 36 validation images, and 36k
test images. After filtering for daytime scenes with dry
weather, we run the pre-trained 2D panoptic segmentation
model [32] to obtain segmentation masks for all remaining
images.

For the training and validation data, we match provided
3D bounding box annotations with the instance masks re-
sulting from the panoptic segmentation. For the test data,
we first run the 3D monocular detection model from [35],
filter for detections with a score above 0.7, and match the re-
sulting 3D annotations. We classify each pixel into instance
foreground, background, or unknown region based on their
semantic mask. As we do not leverage depth information,
we rely on a simple heuristic: Semantic classes that can-
not occlude any foreground instance (street, sky, sidewalk,
manhole, crosswalks) are considered background while oth-
ers are considered “unknown” if the do not belong to the ob-
ject in focus. For those pixels, we do not compute any loss

and exclude them during optimization. For the generation
of the validation set, we leverage the tracking information
provided in the ground-truth annotations of nuScenes in or-
der to create image pairs of the same instance at different
time steps. We then filter for sufficiently visible instances:
we only consider instances where the segmentation mask
occupies at least 60% of the instance 2D bounding box, the
instances are no further than 40m distant to the input cam-
era and the overall resolution has to be at least 40px. Based
on the remaining images, we randomly select 10k pairs for
novel view evaluation.

D. Analysis of data quality

In this section, we further discuss the impact of having
machine-generated annotations as opposed to manually an-
notated ones. An initial discussion with quantitative evalua-
tions can be found in the main paper in Sec. 4.3 and Tab. 4.
Here we provide qualitative results in Fig. 1, where it can be
seen that results on test (second column) experience a slight
increase of blurriness with respect to the ones on train (third
column). It is important to note that, despite the limited de-
crease in sharpness, AutoRF is able to reliably synthesize
novel views on never-seen objects present in the validation
data. This is clear from the results shown in e.g. the first
row, where AutoRF can recover a plausible car back having
observed only its front.

E. Additional qualitative results

In this section we provide further qualitative results,
aimed at highlighting AutoRF’s ability to effectively pro-
vide meaningful object representations.

E.1. Novel-view synthesis

The natural output of AutoRF is the rendering of the
input image in its original input view. A more interesting
output is instead represented by the rendering of the input
image from a novel (never-seen) view. Examples of such
novel-view synthesis can be found in Fig. 6 and Fig. 7. It
must be noted that in our experiments, AutoRF is focused
on learning car representations, so the background, as well
as additional objects, are not included into the novel view
synthesis.

E.2. Code interpolation

AutoRF’s explicit disentanglement of the shape and ap-
pearance allows to synthesize novel objects by performing
a trivial interpolation of the codes. As an example, the ap-
pearance code of a red car can be interpolated to the one of
a silver van. This results in the synthesis of a novel object
smoothly transitioning it’s color between red and silver. In-
terestingly, the same interpolation can be performed on the

shape property of the object. Examples of such novel-view
synthesis can be found in Fig. 4.

E.3. Scene editing

Novel-view synthesis covers the ability of synthesizing a
static scene from novel camera poses. Another interesting
ability is to synthesize novel scenes by arbitrarily changing
object poses, properties as well as camera poses. Examples
of such novel-view synthesis can be found in Fig. 5.

~fe|

Figure 4. Color interpolation: starting from the properties of the
objects in the input view (top-left), AutoRF is able to modify the
properties of each object in the scene.

Figure 5. Scene editing: starting from the objects in the input view
(top-left), AutoRF is able to apply arbitrary modifications and also
include novel objects. Results on an unseen image of the nuScenes
dataset.

Figure 6. Novel-view synthesis: by only observing the input view (top-left), AutoRF is able to synthesize the objects in novel views.

Figure 7. Novel view synthesis: further results on the unseen Mapillary Metropolis dataset. The model is solely trained on nuScenes test
images with different camera setting.

	. Implementation details
	. Additional ablation results
	. Auto-decoder variant of AutoRF
	. Evaluation on other categories
	. Shape reconstruction
	. Run time

	. Further details on the creation of nuScenes novel view data
	. Analysis of data quality
	. Additional qualitative results
	. Novel-view synthesis
	. Code interpolation
	. Scene editing

