NinjaDesc: Content-Concealing Visual Descriptors via Adversarial Learning

Supplementary Material

Tony Ng!?

Hyo Jin Kim'* Vincent T. Lee!

Daniel DeTone! Tsun-Yi Yang!

Tianwei Shen! Eddy Ilg' Vassileios Balntas' Krystian Mikolajczyk? Chris Sweeney'

'Reality Labs, Meta

We first provide a comparison of our NinjaDesc and the
base descriptor on the 3D reconstruction task using SfM
(Sec. A). Next, we report the full HPatches results using
HardNet [7] and SIFT [6] as the base descriptors (Sec. B).
In addition to our results on Aachen-Day-Night v1.1 in the
main paper, we also provide our results on Aachen-Day-
Night v1.0 (Sec. C). Finally, we illustrate the detailed archi-
tecture for the inverse models (Sec. E).

A. 3D Reconstruction

Table 1 shows a quantitative comparison of our content-
concealing NinjaDesc and the base descriptor SOSNet [12]
on the SfM reconstruction task using the landmarks dataset
for local feature benchmarking [!1]. As can be seen, de-
crease in the performance for our content-concealing Nin-
jaDesc is only marginal for all metrics.

B. Full HPatches results for HardNet and SIFT

Figure 1 illustrates our full evaluation results on
HPatches using HardNet [7] and SIFT [6] as the base de-
scriptors for NinjaDesc, in addition to the results using
SOSNet [12] provided in the main paper. Similar to the
results for SOSNet [12], we observe little drop in accuracy
for NinjaDesc overall compared to the original base descrip-
tors, ranging from low (A = 0.1) to high (A = 2.5) privacy
parameters.

C. Evaluation on Aachen-Day-Night v1.0

In Table 2 of the main paper, we report the result of
NinjaDesc on Aachen-Day-Night v1.1 dataset. The v1.1
is updated with more accurate ground-truths compared to
the older v1.0. Because Dusmanu ez al. [3] performed eval-
uation on the v1.0, we also provide our results on v1.0 in
Table 2 for better comparison.

*Corresponding author.

Imperial College London

Reg. Sparse Obser- Track Reproj.

Dataset Method . . .

images points vations length error

South- SOSNet 128 101,568 638,731 629 0.56
Building .

128 images NinjaDesc (1.0) 128 105,780 652,869 6.17 0.56

NinjaDesc (2.5) 128 105,961 653,449 6.17 0.56

Madrid SOSNet 572 95733 672,836 7.03 0.62
Metropolis .

1344 images NinjaDesc (1.0) 566 94,374 668,148 7.08 0.64

NinjaDesc (2.5) 564 94,104 667,387 7.09 0.63

Gendarmen- SOSNet 1076 246,503 1,660,694 6.74 0.74
markt .

1463 images NinjaDesc (1.0) 1087 312,469 1,901,060 6.08 0.75

NinjaDesc (2.5) 1030 340,144 1,871,726 5.50 0.77

Tower of SOSNet 825 200,447 1,733,994 8.65 0.62
London o
1463 images NinjaDesc (1.0) 797 198,767 1,727,785 8.69 0.62

NinjaDesc (2.5) 837 218,888 1,792,908 8.19 0.64

Table 1. 3D reconstruction statistics on the local feature evaluation
benchmark [11]. Number in parenthesis is the privacy parameter

A

D. Additional content-concealment experi-
ments

1. Nearest-neighbour attack. Two examples of nearest-
neighbour (NN) attack similar to that in [3] using a database
of 128,000 existing descriptors are shown in Fig. 2. In both
NN attack scenarios, the reconstruction is significantly de-
teriorated, as it is non-trivial to compute distances between
the two spaces, cf. oracle attack analysis below. Note we
use A = 2.5 for all our experiments.

2. Oracle attack distance analysis. The distances to the
original descriptor using the oracle attack following [3] is
plotted in black in Fig. 3. We also show an alternative
oracle (red dotted), which differs from [3] in that the K
neighbours are first matched using the NinjaDesc database,

HPatches Results

= EAsy ®mHARD ® TOUGH

4 INTER * INTRA

* VIEWP ¢ ILLUM

oo 2 R -+
NinjaDesc (1.0) |"'“'“'i"“""'i“'------:'----<-04400— 8
NinjaDesc (0.25) - 94-{85.63

—_

&

NinjaDesc (0.25
NinjaDesc (0.01

IS

(=]

&

n

NinjaDesc (

Ot

NinjaDesc (0.01) 85.73 NinjaDesc (

)
)
sc (0. . 1.0)
injaDesc (0. - 2.5)
NinjaDesc (0.001) #4-(85.83 NinjaDesc (0.001)
NinjaDesc (0.1) #4-85.86 NinjaDesc (0.1)
HardNet (lib)! e $de¢(87.76 HardNet (hb)

20

0 20 40 60 80 100
Patch Verification mAP [%)]

Image Matchlng mAP [%]

R 4591 NinjaDesc (1.0) 6521
- 4594 NinjaDesc (2.5) 65.31
. 45.95 NinjaDesc (0.25) 6546
. 46.01 NinjaDesc (0.01) 65.54
. 46.03 NinjaDesc (0.001) 65.61
. 46.18 NinjaDesc (0.1) 0567

. 50.66 HardNet (lib) 69-30

60 80 100 0 20 A0 60 80 100

Patch Retrieval mAP [%)]

(a) HardNet Base Descriptor

SIFT ¢ 59.39 NinjaDesc (1.0) l_‘.‘rl 26.11 NinjaDesc (2.5) 14.01
NinjaDesc (2.5) ¢ ¢---(68.12 NinjaDesc (2.5) 26.11 SIFT 44.30
NinjaDesc (0.1) L2 4----{69.40 NinjaDesc (0.25) 26.57 NinjaDesc (1.0) i ° 44.35
NinjaDesc (0.25) 9---Fe9---69.41 NinjaDesc (0.1) 26.65 NinjaDesc (0.25) 44.78
NinjaDesc (1.0) i i $ o |0+ 9-69.49 NinjaDesc (0.001) 27.55 NinjaDesc (0.1) 44.93
NinjaDesc (0.001) 4---e4---{7T1.01 NinjaDesc (0.01) * 27.70 NinjaDesc (0.001) 45.92
NinjaDesc (0.01) 947109 SIFT * 28.61 NinjaDesc (0.01) 46.00
0 20 40 60 80 100 0 20 60 80 100 0 20 40 60 80 100

Patch Verification mAP [%]

Image Matching mAP [%)]

Patch Retrieval mAP [%)

(b) SIFT Base Descriptor

Figure 1. HPatches evaluation results. For each base descriptor (HardNet [7] and SIFT [6]), we compare with NinjaDesc, with 5 different
levels of privacy parameter A (indicated by the number in parenthesis). All results are from models trained on the liberty subset of the UBC
patches [4] dataset, apart from SIFT which is handcrafted, and we use the Kornia [9] GPU implementation evaluated on 32 x 32 patches.

Accuracy @ Thresholds (%)

Method 0.25m, 2° 0.5m, 5° 5.0m, 10°

Query NNs

Base Desc SOS / Hard / SIFT SOS / Hard / SIFT SOS / Hard / SIFT

Raw 85.1/85.4/84.3 92.7/93.1/92.7 97.3/98.2/97.6
A=0.1 854/84.7/82.0 92.5/91.9/91.1 97.5/96.8/96.4

200 XN =1.0 84.7/84.3/82.9 92.4/91.9/91.0 97.2/96.7/96.1

Day A\=2.5 84.6/83.7/82.5 92.4/92.0/91.0 97.1/96.8/96.0
(824)

Raw 85.9/86.8/86.0 92.5/93.7/94.1 97.3/98.1/98.2
A=0.1 852/852/84.2 922/92.4/914 97.1/97.1/96.6

500 X=1.0 84.7/857/834 922/92.6/91.6 97.2/96.7/96.7
A=2.5 856/853/83.6 92.7/91.7/91.1 97.3/96.8/96.2

Raw 51.0/57.2/55.1 653/68.4/67.3 70.4/76.5/74.5

A=0.1 51.0/459/459 62.2/56.1/54.1 68.4/62.2/63.3
Night 20 N — 1.0 50.0/43.9/449 62.2/54.1/56.1 66.3/62.2/64.3
(98) A =2.5 48.0/44.9/449 582/59.2/52.0 65.3/65.3/62.2

Raw 48.0/51.0/54.1 59.2/64.3/65.3 65.3/68.4/74.5

A =0.1 41.8/39.8/41.8 52.0/51.0/52.0 60.2/56.1/60.2

500 X=1.0 43.9/39.8/439 54.1/50.0/54.1 63.3/58.2/63.3
A =25 429/40.8/429 52.0/50.0/52.0 61.2/56.1/58.2

Table 2. Visual localization results on Aachen-Day-Night
v1.0 [10]. ‘Raw’ corresponds to the base descriptor in each col-
umn, followed by three A vales (0.1, 1.0, 2.5) for NinjaDesc.

then their corresponding SOSNet descriptor pairings are re-
trieved. For completeness, we also plot the results of only
using NinjaDesc descriptors as the database (blue dashed).

NN Attack Direct Inversion Attack

RGB SOSNet Database NinjaDesc Database SOSNet NinjaDesc

Figure 2. Examples of NN attack. For NN attack, we show results
using SOSNet and our NinjaDesc descriptors to form the database.

—

o

o

k=

R S T
9]

g - QOracle [16]

o 1.2 ==== Oracle (alternative)

‘q'; == Oracle [16] w/ NinjaDesc DB
o

5 1.0-¥

o

] srererereseriieereT Ty :

© 0 20000 40000 60000 80000

100000
number of neighbours (K)

Figure 3. Distances to the original descriptor (SOSNet) of the
nearest-neighbour retrieved by three variants of the oracle attack.

We observe that the distance decreases as K increases for
SOSNet database like Fig. 6 in [3]. However, we argue that
this alone does not validate manifold folding. Rather, as K
increases we approach the limit of the distance to the real
NN of the original (SOSNet) descriptor, regardless of the

private (NinjaDesc) representation. This limit is achieved
by the alternative oracle (red dotted), where the closest Nin-
jaDesc (i.e. the corresponding SOSNet) database descriptor
is always retrieved, for most K values. If the oracle in [3]
uses the NinjaDesc database (blue dashed), the distance re-
mains large. This is because unlike [3], NinjaNet maps the
original feature space to a completely new one via learned
non-linear transformations, and is thus robust to distance
calculation across the two descriptor spaces.

Fig. 4 shows how our reconstruction improves as K in-
creases in oracle attack [3]. Still, even with very large K, it
is visibly worse than that from direct inversion or the orig-
inal image. For the oracle with NinjaDesc database (last
column), the reconstruction is highly privacy-preserving.

NinjaDesc (A = 2.5)
raw SOSNet K=5 K =100 K = 1,000 K '=10,000 K = 100,000 K = 128,000

direct inversion

attack oracle attack (SOSNet database) oracle attack

(NinjaDesc database)

Figure 4. Examples of oracle attack w.r.t. num. of neighbours K.

As noted in [3], an oracle attack is impractical as the at-
tacker does not have access to the original descriptors.

E. Detailed architectures of the descriptor in-
version models

UNet. The architecture of the UNet-based descriptor inver-
sion model, which is also used in [1,8], is shown in Figure 5.

UResNet. Figure 6 illustrates the architecture of the de-
scriptor inversion model based on UResNet used for the ab-
lation study in the Section 5.2 of the main paper. The overall
“U” shape of UResNet is similar to UNet, but each convo-
lution block is drastically different. We use the 5 stages
of ResNet50 [5] (pretrained on ImageNet [2]) {convl,
conv2_xX, conv3_x, convi_x, conv4,x} as the 5 en-
coding / down-sampling blocks, except for conv2_x we re-
move the MaxPool2d so that each encoding block cor-
responds to a 1/2 down-sampling in resolution. Since
ResNet50 takes in RGB image as input (which has shape
of 3 x h x w, whereas the sparse feature maps are of
shape 128 x h x w), we pre-process the input with 4 addi-
tional basic redisual blocks denoted by res_conv_block
in Figure 6. The up-sampling decoder blocks (denoted by
up-conv) are also residual blocks with an addition input
up-sampling layer using bilinear interpolation. In contrast
to UNet, the skip connections in our UResNet are per-
formed by additions, rather than concatenations.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

Deeksha Dangwal, Vincent T. Lee, Hyo Jin Kim, Tianwei
Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Bran-
don Reagen, Timothy Sherwood, Vasileios Balntas, Armin
Alaghi, and Eddy Ilg. Analysis and mitigations of reverse
engineering attacks on local feature descriptors. In BMVC,
2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, 2009.

Mihai Dusmanu, Johannes L Schonberger, Sudipta N Sinha,
and Marc Pollefeys. Privacy-preserving visual feature de-
scriptors through adversarial affine subspace embedding. In
CVPR, 2021.

Michael Goesele, Noah Snavely, Brian Curless, Hugues
Hoppe, and Steven M. Seitz. Multi-view stereo for com-
munity photo collections. In CVPR, 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

David G. Lowe. Distinctive image features from scale-
invariant keypoints. In ZJCV, 2004.

Anastasiya Mishchuk, Dmytro Mishkin, Filip Radenovié,
and Jifi Matas. Working hard to know your neighbor’s mar-
gins: Local descriptor learning loss. In NIPS, 2017.
Francesco Pittaluga, Sanjeev J Koppal, Sing Bing Kang, and
Sudipta N Sinha. Revealing scenes by inverting structure
from motion reconstructions. In CVPR, 2019.

Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee,
and Gary Bradski. Kornia: an open source differentiable
computer vision library for PyTorch. In WACV, 2020.
Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,
Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi
Okutomi, Marc Pollefeys, Josef Sivic, Fredrik Kahl, and
Tomas Pajdla. Benchmarking 6dof outdoor visual localiza-
tion in changing conditions. In CVPR, 2018.

Johannes L Schonberger, Hans Hardmeier, Torsten Sattler,
and Marc Pollefeys. Comparative evaluation of hand-crafted
and learned local features. In CVPR, 2017.

Yurun Tian, Xin Yu, Bin Fan, Wu. Fuchao, Huub Heijnen,
and Vassileios Balntas. SOSNet: Second order similarity
regularization for local descriptor learning. In CVPR, 2019.

output
(3xhxw)

output
(3xhxw)

(€ '¥9)pzAuU0D

I_IAI (82T ‘952)Au0d—dn

f

I_IAI (952 ‘z15)AU0ddn
(82T '952)%201q~ AU0d q

(¥9 ‘821)*20Ig™ Au0d

(49 ‘82T)AU0d dn

|_|AI (z15 'pzoT)AU0d"dn

t

mWAI (82T ‘95z7)Au0d—dn

(952 ‘215)>0019 AU0OD

(T=0zI5"|2uta)
‘bZ0T '8¥02)PZAUOD

(4eauiiq)
Z x 9|dwesdn

I

(1024 x h/32 x w/32) T

mWAI (952 ‘z15)AU0O—dn

(215 '$20T1)>00I19 AU0d

t

X" GAUOD

05I9NS3Y

(1S 'vT0oT)AU0d~dn

(512 x h/16 x w/16)

X HAUOD
0SI3NSY

(256 x h/8 x w/8)

(¥20T ‘21S)%0019” AUOD

X EAUOD

(128 x h/4 x w/4)

Figure 5. UNet Architecture.

(z ‘2)pzioodxen w oo
(215 '952)>0019~ Au0d x
= (100dxew diis) X zAuod
(2 “2)pzioodxen m 0S1PNSY
(952 '821)%20|q~ Au0d owwwuwmm
(z ‘2)pzioodxen w m,w \\\\\\ R
; — = : II+
(82T '$9)>20|q~Au0D : : \. /
(z ‘2)pzioodxen T m,

>20|q~AU0DSB1

(e=ozis pwion
pTIn0 o pIw)pEAUD)

ch,

(9 ‘821)*2019 Au0d

(8 '8 91)
%20|qAUOD T S3U

(in

(1=0215 jous
“p™piw P u)pzAUo)

(91 ‘o1 ‘2€)
20|q AUOD™ SaU

res_conv_block

(z€ 'v9 '821)
»20|q”AuOd sS4 |

input
(128xhxw)

) B v
. e ~
S (R R | _ o X 2
95 9 oo o= |l 5 £ N
B o IS 3 3| [eopeonens |
2o nuv,_ — I 2] (worano)pzurionyores | | £ X B E
g E £] (47300 ‘pn0)pzauod _ 5] _ = || e - anpenues | |LPESONGES
| | = — -

55 0T)| £ [eewme)) o S
§° 3§ |zl _ T g e ot
= Hm_ (yo73In0)pzULIONYDIRY _ m_ (4noquBiaN 153183N) _ c 2paned
.- m_ﬁ (yo3n0 “yo—unpzauod | | nr__ ¢ x @iduwesdn | -8
mw S J S n.r_ Geon)

I_I e

3

Figure 6. UResNet Architecture.

