
NinjaDesc: Content-Concealing Visual Descriptors via Adversarial Learning
Supplementary Material

Tony Ng1,2 Hyo Jin Kim1* Vincent T. Lee1 Daniel DeTone1 Tsun-Yi Yang1

Tianwei Shen1 Eddy Ilg1 Vassileios Balntas1 Krystian Mikolajczyk2 Chris Sweeney1

1Reality Labs, Meta 2Imperial College London

We first provide a comparison of our NinjaDesc and the
base descriptor on the 3D reconstruction task using SfM
(Sec. A). Next, we report the full HPatches results using
HardNet [7] and SIFT [6] as the base descriptors (Sec. B).
In addition to our results on Aachen-Day-Night v1.1 in the
main paper, we also provide our results on Aachen-Day-
Night v1.0 (Sec. C). Finally, we illustrate the detailed archi-
tecture for the inverse models (Sec. E).

A. 3D Reconstruction

Table 1 shows a quantitative comparison of our content-
concealing NinjaDesc and the base descriptor SOSNet [12]
on the SfM reconstruction task using the landmarks dataset
for local feature benchmarking [11]. As can be seen, de-
crease in the performance for our content-concealing Nin-
jaDesc is only marginal for all metrics.

B. Full HPatches results for HardNet and SIFT

Figure 1 illustrates our full evaluation results on
HPatches using HardNet [7] and SIFT [6] as the base de-
scriptors for NinjaDesc, in addition to the results using
SOSNet [12] provided in the main paper. Similar to the
results for SOSNet [12], we observe little drop in accuracy
for NinjaDesc overall compared to the original base descrip-
tors, ranging from low (λ = 0.1) to high (λ = 2.5) privacy
parameters.

C. Evaluation on Aachen-Day-Night v1.0

In Table 2 of the main paper, we report the result of
NinjaDesc on Aachen-Day-Night v1.1 dataset. The v1.1
is updated with more accurate ground-truths compared to
the older v1.0. Because Dusmanu et al. [3] performed eval-
uation on the v1.0, we also provide our results on v1.0 in
Table 2 for better comparison.

*Corresponding author.

Dataset Method Reg.
images

Sparse
points

Obser-
vations

Track
length

Reproj.
error

South-
Building

128 images

SOSNet 128 101,568 638,731 6.29 0.56

NinjaDesc (1.0) 128 105,780 652,869 6.17 0.56

NinjaDesc (2.5) 128 105,961 653,449 6.17 0.56

Madrid
Metropolis

1344 images

SOSNet 572 95,733 672,836 7.03 0.62

NinjaDesc (1.0) 566 94,374 668,148 7.08 0.64

NinjaDesc (2.5) 564 94,104 667,387 7.09 0.63

Gendarmen-
markt

1463 images

SOSNet 1076 246,503 1,660,694 6.74 0.74

NinjaDesc (1.0) 1087 312,469 1,901,060 6.08 0.75

NinjaDesc (2.5) 1030 340,144 1,871,726 5.50 0.77

Tower of
London

1463 images

SOSNet 825 200,447 1,733,994 8.65 0.62

NinjaDesc (1.0) 797 198,767 1,727,785 8.69 0.62

NinjaDesc (2.5) 837 218,888 1,792,908 8.19 0.64

Table 1. 3D reconstruction statistics on the local feature evaluation
benchmark [11]. Number in parenthesis is the privacy parameter
λ.

D. Additional content-concealment experi-
ments

1. Nearest-neighbour attack. Two examples of nearest-
neighbour (NN) attack similar to that in [3] using a database
of 128,000 existing descriptors are shown in Fig. 2. In both
NN attack scenarios, the reconstruction is significantly de-
teriorated, as it is non-trivial to compute distances between
the two spaces, cf . oracle attack analysis below. Note we
use λ = 2.5 for all our experiments.

2. Oracle attack distance analysis. The distances to the
original descriptor using the oracle attack following [3] is
plotted in black in Fig. 3. We also show an alternative
oracle (red dotted), which differs from [3] in that the K
neighbours are first matched using the NinjaDesc database,

0 20 40 60 80 100

Patch Verification mAP [%]

HardNet (lib)

NinjaDesc (0.1)

NinjaDesc (0.001)

NinjaDesc (0.01)

NinjaDesc (0.25)

NinjaDesc (1.0)

NinjaDesc (2.5)

87.76

85.86

85.83

85.73

85.63

85.56

85.51

Inter Intra

0 20 40 60 80 100

Image Matching mAP [%]

HardNet (lib)

NinjaDesc (0.1)

NinjaDesc (0.001)

NinjaDesc (2.5)

NinjaDesc (1.0)

NinjaDesc (0.01)

NinjaDesc (0.25)

50.66

46.18

46.03

46.01

45.95

45.94

45.91

Viewp Illum

0 20 40 60 80 100

Patch Retrieval mAP [%]

HardNet (lib)

NinjaDesc (0.1)

NinjaDesc (0.001)

NinjaDesc (0.01)

NinjaDesc (0.25)

NinjaDesc (2.5)

NinjaDesc (1.0)

69.30

65.67

65.61

65.54

65.46

65.31

65.21

HPatches Results
Easy Hard Tough

(a) HardNet Base Descriptor

0 20 40 60 80 100

Patch Verification mAP [%]

NinjaDesc (0.01)

NinjaDesc (0.001)

NinjaDesc (1.0)

NinjaDesc (0.25)

NinjaDesc (0.1)

NinjaDesc (2.5)

SIFT

71.09

71.01

69.49

69.41

69.40

68.12

59.39

Inter Intra

0 20 40 60 80 100

Image Matching mAP [%]

SIFT

NinjaDesc (0.01)

NinjaDesc (0.001)

NinjaDesc (0.1)

NinjaDesc (0.25)

NinjaDesc (2.5)

NinjaDesc (1.0)

28.61

27.70

27.55

26.65

26.57

26.11

26.11

Viewp Illum

0 20 40 60 80 100

Patch Retrieval mAP [%]

NinjaDesc (0.01)

NinjaDesc (0.001)

NinjaDesc (0.1)

NinjaDesc (0.25)

NinjaDesc (1.0)

SIFT

NinjaDesc (2.5)

46.00

45.92

44.93

44.78

44.35

44.30

44.01

HPatches Results
Easy Hard Tough

(b) SIFT Base Descriptor

Figure 1. HPatches evaluation results. For each base descriptor (HardNet [7] and SIFT [6]), we compare with NinjaDesc, with 5 different
levels of privacy parameter λ (indicated by the number in parenthesis). All results are from models trained on the liberty subset of the UBC
patches [4] dataset, apart from SIFT which is handcrafted, and we use the Kornia [9] GPU implementation evaluated on 32× 32 patches.

Method
Accuracy @ Thresholds (%)

Query NNs
0.25m, 2◦ 0.5m, 5◦ 5.0m, 10◦

Base Desc SOS / Hard / SIFT SOS / Hard / SIFT SOS / Hard / SIFT

Day
(824)

20

Raw 85.1 / 85.4 / 84.3 92.7 / 93.1 / 92.7 97.3 / 98.2 / 97.6
λ = 0.1 85.4 / 84.7 / 82.0 92.5 / 91.9 / 91.1 97.5 / 96.8 / 96.4
λ = 1.0 84.7 / 84.3 / 82.9 92.4 / 91.9 / 91.0 97.2 / 96.7 / 96.1
λ = 2.5 84.6 / 83.7 / 82.5 92.4 / 92.0 / 91.0 97.1 / 96.8 / 96.0

50

Raw 85.9 / 86.8 / 86.0 92.5 / 93.7 / 94.1 97.3 / 98.1 / 98.2
λ = 0.1 85.2 / 85.2 / 84.2 92.2 / 92.4 / 91.4 97.1 / 97.1 / 96.6
λ = 1.0 84.7 / 85.7 / 83.4 92.2 / 92.6 / 91.6 97.2 / 96.7 / 96.7
λ = 2.5 85.6 / 85.3 / 83.6 92.7 / 91.7 / 91.1 97.3 / 96.8 / 96.2

Night
(98)

20

Raw 51.0 / 57.2 / 55.1 65.3 / 68.4 / 67.3 70.4 / 76.5 / 74.5
λ = 0.1 51.0 / 45.9 / 45.9 62.2 / 56.1 / 54.1 68.4 / 62.2 / 63.3
λ = 1.0 50.0 / 43.9 / 44.9 62.2 / 54.1 / 56.1 66.3 / 62.2 / 64.3
λ = 2.5 48.0 / 44.9 / 44.9 58.2 / 59.2 / 52.0 65.3 / 65.3 / 62.2

50

Raw 48.0 / 51.0 / 54.1 59.2 / 64.3 / 65.3 65.3 / 68.4 / 74.5
λ = 0.1 41.8 / 39.8 / 41.8 52.0 / 51.0 / 52.0 60.2 / 56.1 / 60.2
λ = 1.0 43.9 / 39.8 / 43.9 54.1 / 50.0 / 54.1 63.3 / 58.2 / 63.3
λ = 2.5 42.9 / 40.8 / 42.9 52.0 / 50.0 / 52.0 61.2 / 56.1 / 58.2

Table 2. Visual localization results on Aachen-Day-Night
v1.0 [10]. ‘Raw’ corresponds to the base descriptor in each col-
umn, followed by three λ vales (0.1, 1.0, 2.5) for NinjaDesc.

then their corresponding SOSNet descriptor pairings are re-
trieved. For completeness, we also plot the results of only
using NinjaDesc descriptors as the database (blue dashed).

RGB SOSNet NinjaDescSOSNet Database NinjaDesc Database

NN Attack Direct Inversion Attack

Figure 2. Examples of NN attack. For NN attack, we show results
using SOSNet and our NinjaDesc descriptors to form the database.

0 20000 40000 60000 80000 100000

number of neighbours (K)

1.0

1.2

1.4

d
is

ta
n
ce

 t
o
 d

e
sc

ri
p
to

r

Oracle [16]
Oracle (alternative)
Oracle [16] w/ NinjaDesc DB

Figure 3. Distances to the original descriptor (SOSNet) of the
nearest-neighbour retrieved by three variants of the oracle attack.

We observe that the distance decreases as K increases for
SOSNet database like Fig. 6 in [3]. However, we argue that
this alone does not validate manifold folding. Rather, as K
increases we approach the limit of the distance to the real
NN of the original (SOSNet) descriptor, regardless of the

private (NinjaDesc) representation. This limit is achieved
by the alternative oracle (red dotted), where the closest Nin-
jaDesc (i.e. the corresponding SOSNet) database descriptor
is always retrieved, for most K values. If the oracle in [3]
uses the NinjaDesc database (blue dashed), the distance re-
mains large. This is because unlike [3], NinjaNet maps the
original feature space to a completely new one via learned
non-linear transformations, and is thus robust to distance
calculation across the two descriptor spaces.

Fig. 4 shows how our reconstruction improves as K in-
creases in oracle attack [3]. Still, even with very large K, it
is visibly worse than that from direct inversion or the orig-
inal image. For the oracle with NinjaDesc database (last
column), the reconstruction is highly privacy-preserving.

raw SOSNet

NinjaDesc (λ = 2.5)

direct inversion
attack oracle attack (SOSNet database) oracle attack

(NinjaDesc database)

K = 5 K = 100 K = 1,000 K = 10,000 K = 100,000 K = 128,000

Figure 4. Examples of oracle attack w.r.t. num. of neighbours K.

As noted in [3], an oracle attack is impractical as the at-
tacker does not have access to the original descriptors.

E. Detailed architectures of the descriptor in-
version models

UNet. The architecture of the UNet-based descriptor inver-
sion model, which is also used in [1,8], is shown in Figure 5.
UResNet. Figure 6 illustrates the architecture of the de-
scriptor inversion model based on UResNet used for the ab-
lation study in the Section 5.2 of the main paper. The overall
“U” shape of UResNet is similar to UNet, but each convo-
lution block is drastically different. We use the 5 stages
of ResNet50 [5] (pretrained on ImageNet [2]) {conv1,
conv2 x, conv3 x, conv4 x, conv4 x} as the 5 en-
coding / down-sampling blocks, except for conv2 x we re-
move the MaxPool2d so that each encoding block cor-
responds to a 1/2 down-sampling in resolution. Since
ResNet50 takes in RGB image as input (which has shape
of 3 × h × w, whereas the sparse feature maps are of
shape 128 × h × w), we pre-process the input with 4 addi-
tional basic redisual blocks denoted by res conv block
in Figure 6. The up-sampling decoder blocks (denoted by
up conv) are also residual blocks with an addition input
up-sampling layer using bilinear interpolation. In contrast
to UNet, the skip connections in our UResNet are per-
formed by additions, rather than concatenations.

References
[1] Deeksha Dangwal, Vincent T. Lee, Hyo Jin Kim, Tianwei

Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Bran-
don Reagen, Timothy Sherwood, Vasileios Balntas, Armin
Alaghi, and Eddy Ilg. Analysis and mitigations of reverse
engineering attacks on local feature descriptors. In BMVC,
2021.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, 2009.

[3] Mihai Dusmanu, Johannes L Schönberger, Sudipta N Sinha,
and Marc Pollefeys. Privacy-preserving visual feature de-
scriptors through adversarial affine subspace embedding. In
CVPR, 2021.

[4] Michael Goesele, Noah Snavely, Brian Curless, Hugues
Hoppe, and Steven M. Seitz. Multi-view stereo for com-
munity photo collections. In CVPR, 2007.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[6] David G. Lowe. Distinctive image features from scale-
invariant keypoints. In IJCV, 2004.

[7] Anastasiya Mishchuk, Dmytro Mishkin, Filip Radenović,
and Jir̆i Matas. Working hard to know your neighbor’s mar-
gins: Local descriptor learning loss. In NIPS, 2017.

[8] Francesco Pittaluga, Sanjeev J Koppal, Sing Bing Kang, and
Sudipta N Sinha. Revealing scenes by inverting structure
from motion reconstructions. In CVPR, 2019.

[9] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee,
and Gary Bradski. Kornia: an open source differentiable
computer vision library for PyTorch. In WACV, 2020.

[10] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,
Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi
Okutomi, Marc Pollefeys, Josef Sivic, Fredrik Kahl, and
Tomas Pajdla. Benchmarking 6dof outdoor visual localiza-
tion in changing conditions. In CVPR, 2018.

[11] Johannes L Schonberger, Hans Hardmeier, Torsten Sattler,
and Marc Pollefeys. Comparative evaluation of hand-crafted
and learned local features. In CVPR, 2017.

[12] Yurun Tian, Xin Yu, Bin Fan, Wu. Fuchao, Huub Heijnen,
and Vassileios Balntas. SOSNet: Second order similarity
regularization for local descriptor learning. In CVPR, 2019.

Figure 5. UNet Architecture.

Figure 6. UResNet Architecture.

