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1. Pose Discrimination

As discussed in Section 3.1.2 of the main paper, a draw-
back of global representations is their poor reliability to rep-
resent the real image of a new object even when the object
identity is known and the background is uniform. To illus-
trate this, we show in Figure | the correlation between pose
distances and representation distances as in [9, 1]. [9, 1]
provided such plots only for seen objects and RGB-D data,
we consider here objects that have been seen or unseen and
we use RGB data only. As in [9, 1], the plots of Figure 1
are obtained by considering all possible pairs made of real
images and synthetic images for a given object.

Ideally, the plots should exhibit a diagonal pattern, in
the region closed to the (0, 0) point on the bottom-left of
the graph. This region corresponds to the critical region for
correct image/template matching. A diagonal pattern corre-
sponds to a strong correlation between pose differences and
distances between representations.

More plots are given in Section 4 and they all yield to the
same conclusion:

* The first column of Figure 1 shows that both represen-
tations result in a strong correlation for an seen object.

¢ The second column shows this correlation is lost when
considering a new object for the global representation
but not with ours.

 To check if this was due to the presence of clutter in the
background of the real images, we removed the back-
ground by using the ground truth mask of the objects.
The third column of Figure 1 shows that even without
background, the correlation is still very poor for global
representations. This can be explained by the fact that
the pooling layers remove important information for
unseen objects. We postulate that the rest of the archi-
tecture, in particular the fully connected layers learns
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Figure 1: Visualization of the correlation between pose
distances and representation distances, for understand-
ing the discriminative power of different image representa-
tions for pose retrieval. First row is for [1], second row is
for our method. Please see Section 1.

to compensate this loss of information for seen objects,
but such compensation is not possible for unseen ob-
jects.

2. Training details

Cropping on LINEMOD. Unless otherwise stated in
previous works [9, 1], the cropping on LINEMOD and
Occlusion-LINEMOD is done by virtually setting a box, 40
cm in each dimension, centered at the object as shown in
Figure 2. When all the patches are extracted, we normal-
ize them to the desired crop size. Please note that with this
cropping, we do not consider in-plane rotations, in other
words, we omit one additional degree of freedom.



Method Backbone Features Loss Seen LM Seen O-LM Unseen LM Unseen O-LM

#1 #2 #3  Avg. | #1 #2 #3  Avg. | #1 #2 #3  Avg. | #] #2 #3  Avg.
[9] Base [9] Global [9] 12.1 132 12.0| 124 | 495 51.1 523|509 | 546 557 59.0| 564 |594 572 56.0| 575
9] Base [9] Global InfoNCE[5] | 6.6 65 6.7 | 6.6 |479 452 529 | 58.6 | 58.6 485 48.1|51.7 614 563 54.6| 573
[1] Base [9] Global [1] 11.2 11.8 129 | 12.0 | 49.5 51.1 523 | 51.0 | 54.6 557 59.0 | 56.4 | 60.0 53.8 60.1 | 57.9
[1] Base [9] Global InfoNCE[5] | 64 64 65 | 64 | 466 472 504 | 48.0 | 679 48.6 508 | 557 | 73.4 56.1 534 | 60.9
Ours Base [9] Local [9] 152 158 149 | 153 | 32.6 319 31.0| 31.8 |27.1 274 253|265 |415 412 423|416
Ours Base [9] Local InfoNCE [5] | 48 51 79 | 59 | 123 185 218|185 154 99 203|152 (323 213 17.6 |23.7
91 ResNet50 [4] Global InfoNCE [5] | 3.6 43 47 | 42 | 267 298 345|303 |43.1 427 40.5| 42.1 | 458 51.8 44.0 | 47.1
[1] ResNet50 [4] Global InfoNCE [5]| 3.7 45 5.1 44 |357 29.8 39.7|351|51.1 500 393|468 | 645 61.0 49.8 | 584
Ours ResNet50 [4] Local InfoNCE [5] | 3.3 46 34 | 37 |97 111 115|107 | 75 31 100 | 69 | 175 115 7.5 | 122

Table 1: Comparison of our method with [9] and [1] on seen and unseen objects of LINEMOD (LM)

and Occlusion-

LINEMOD (O-LM) for the three splits detailed in Section 4.1 of the main paper. We report here the pose error, measured by
the angle between the positions on the half-sphere for the ground truth pose and the predicted pose.

Figure 2: Cropping on LINEMOD. the cropping on

LINEMOD and Occlusion-LINEMOD is done by virtually
setting a box centered at the object. Please see Section 2.

1

Figure 3: Examples of training images. We use random-
ized background from SUN397 [10] with data augmenta-
tion, including Gaussian blur, contrast, brightness, color
and sharpness filters from the Pillow library [3].

Data augmentation on T-LESS. As done in [7, 6], we
also apply data augmentation to the input images of T-LESS
during training. We use Gaussian blur, contrast, brightness,
color, and sharpness filters with the Pillow library [3]. Some
training samples can be seen in Figure 3.

Pre-trained Features. We intialize the network
ResNet50 with MOCOv2’s features [2]. It has been
shown in [1 1] that this initialization can improve both the
convergence and the performance. We show in Table 2 our
comparison on T-LESS dataset when training the network
ResNet50 from scratch and with initializing pre-trained
features of MOCOV2 [2].

e e e Number Recall VSD
Initialization " lat
empiates  opj. 1-18  Obj. 19-30  Avg
From scratch 21K 55.42 51.40 53.81
MOCOV2 [2] 21K 59.14 56.91 58.25

Table 2: Network initializations evaluated on T-LESS.
Using pre-trained features from MOCOvV2 [2] brings some
improvement comparing to training from scratch.

3. Projective distance estimation

As done in [7, 6], we estimate 3D translation in the query
image from the retrieved template and the input bounding
box as detailed in Section 3.6.2 of [8]. More precisely, given
known camera intrinsic of both real sensor Ky and of
the synthetic view K¢y, we estimate the distance fquery,z
of real image:

P ‘ |bbtemp | |

J
tquery,z = ttemp,z X bequeryH query

(1

ftemp

where ||bb || is the diagonal of the bounding box and
|| )1l is the focal length.

Then, we can estimate the vector to transform from the
object center in the synthetic view to the query image:

s 7 -1 - -1
At = tquery,quuerybbqueT%C - ttemp,thempbbtemp,c

2
where bb ) . is the bounding box centers in homogeneous
coordinates.

Finally, the 3D translation in the query image fquery can
be estimated as :

£query = tAtemp + AtA (3)

where ftemp = (0,0, ftemp,z), the translation from camera
to object center in the synthetic view.



4. Additional Results

4.1.

Quantitative Results

We show in Table | quantitative results with pose error,
measured by the angle between the two positions on the
viewing half-sphere.

4.2.

Qualitative Results

We show in Figures 4, 5, 6, 7, 8, 9, 10 additional qual-
itative results on T-LESS and each split of LINEMOD and
Occlusion-LINEMOD.
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Figure 5: Qualitative results four test sets on Split #1: of seen objects of LINEMOD (top left), seen objects of Occlusion-
LINEMOD (top right), unseen objects of LINEMOD (bottom left) and unseen objects of Occlusion-LINEMOD (bottom
right).
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Figure 6: Visualization of the correlation between pose distances and representation distances on Split #1: of unseen
objects of LINEMOD (two first rows and two first columns from the left of two last rows) and unseen objects of LINEMOD
(fours last columns from the left of two last rows). Ideally, the plots should exhibit the diagonal pattern at the region closed
to the (0, 0) point on the bottom-left that corresponds to the critical region for correct image/template matching, showing a
strong correlation between pose differences and representation distances. The plots of seen objects of LINEMOD show that
both representations result in a strong correlation for training objects. The plots of unseen objects of LINEMOD show this
correlation is lost when considering a new object for the global representation [ 1] but not with ours.
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Figure 7: Qualitative results four test sets on Split #2: of seen objects of LINEMOD (top left), seen objects of Occlusion-

LINEMOD (top right), unseen objects of LINEMOD (bottom left) and unseen objects of Occlusion-LINEMOD (bottom
right).
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Figure 8: Visualization of the correlation between pose distances and representation distances on Split #2: seen objects
of LINEMOD (two first rows and two first columns from the left of two last rows) and unseen objects of LINEMOD (fours
last columns from the left of two last rows).
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Figure 9: Qualitative results four test sets on Split #3: of seen objects of LINEMOD (top left), seen objects of Occlusion-

LINEMOD (top right), unseen objects of LINEMOD (bottom left) and unseen objects of Occlusion-LINEMOD (bottom
right).
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Figure 10: Visualization of the correlation between pose distances and representation distances on Split #3: seen objects
of LINEMOD (two first rows and two first columns from the left of two last rows) and unseen objects of LINEMOD (fours
last columns from the left of two last rows).



