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A. Reproducibility
We provide the URL to the project’s Github repository

containing our source code: https://github.com/
YotamNitzan/LARGE. Additionally, we have made an
effort throughout the paper towards making the results reli-
able and reproducible. Specifically, as noted in Section 4,
whenever feasible we repeated experiments a thousand times
and report mean and standard deviation in Figures 3, 4, 1
to 3, 6 and 19. Additionally, we report detailed information
on subtle aspects of the model and data in Section E.

B. Outline of StyleGAN Editing Methods
In the following section we provide a high-level outline of

the StyleGAN editing methods which were used to discover
the latent hyper-planes used in the core paper.

For more in-depth explanations and an outline of addi-
tional editing methods, we refer the readers to each method’s
respective paper [14, 20, 21] and to a recent survey [2].

B.1. InterFaceGAN

InterFaceGAN [20] introduces a simple, weakly super-
vised method for discovering linear editing directions in the
latent space of a pre-trained GAN. The method requires ac-
cess to a pre-trained binary attribute classifier (e.g. one that
can predict whether the individual in an image is looking
left or right). With such a classifier at hand, one samples
a large number of latent codes (typically 500k), uses them
to synthesize images, and labels these images with the clas-
sifier. The result is a large set of pairs of latent codes and
their associated classifier-label. These pairs are pruned to
keep only those with the highest prediction confidence, and
these are then used to learn a linear SVM in the latent space.
Finally, the SVM’s decision boundary serves as a hyperplane
that separates the latent space into two binary regions, and
the normal to this hyperplane serves as an editing direction
which smoothly controls the classifier’s property in gener-
ated images (e.g. it controls pose in the case of a left / right

*Indicates equal contribution

classifier).

B.2. SeFA

SeFA [21] introduce a closed-form method for identify-
ing meaningful latent directions in an unsupervised manner.
Their method considers the weights, A, of the first (fully
connected) layer that operates on the latent codes. Their
intuition is that latent directions n which maximize ∥An∥2
are those that will produce the most significant change post
the linear projection, and will likely impact the generated
image in a similar manner. It is further shown that when
these latent directions are constrained to a unit norm, the
ones that provide the largest change those eigenvectors of
ATA with the largest eigenvalues. The task of finding mean-
ingful directions can therefore be tackled by closed-form
eigendecomposition of ATA. Not all such directions are
meaningful or highly disentangled, however, and so brief
human observation is required to evaluate the meaning and
the quality of these direction.

B.3. StyleCLIP

StyleCLIP [14] discovers editing directions in the latent
space by leveraging CLIP, a pre-trained vision-language
model [16]. They consider all entries of the GAN’s latent
code, and modify them one at a time through w+,− = w0 ±
αei where eij = δij and w0 is some randomly sampled,
initial code. The two codes, w+,− are used to synthesize a
pair of images which are then passed through CLIP’s image
encoder, resulting in two points in CLIP’s embedding space.
The process is repeated using a large number of initially
sampled latents, w0, and the average CLIP-space direction
between each pair of generated samples is recorded. Finally,
this process repeats for every entry of the latent codes.

In a sense, this process uses CLIP to encode the semantic
direction of change induced by a modification of a specific
entry of the latent code. At inference time, one can then use
a pair of textual prompts to similarly describe a direction
(e.g.’Face with hair’ to ’Face with long hair’). These prompts
are embedded into CLIP’s space using the CLIP text encoder,
and the direction between them can be calculated. Finally,
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the latent editing direction is given by determining which
latent code entries produced a CLIP-space change which is
closely aligned with the textually described direction (i.e.,
which pre-recorded directions have the highest dot-product
with the textual direction).

C. Ablation Study
We conduct an ablation study on several components of

our method. Namely, the use of a linear regression model,
our choice of inversion mechanism and the importance of
our layer-weighting approach (as detailed in Subsection 3.2
of the core paper).

C.1. Evaluating Linearity

We use a linear regression model to calibrate distance
features to real-world values. We next provide an additional
experiment, motivating the use of a linear model over higher
degree polynomials. Using the same set of labeled images
and their distances from a semantic hyperplane, we compare
the accuracy of a linear model trained on these data to the ac-
curacy of polynomial models of higher degrees - specifically
2, 3 and 5. Results are shown in Figure 1, As can be seen,
for all attributes tested, the linear model is superior when
a few labeled samples are provided. Additionally, despite
having greater expressive power, the polynomial models do
not outpace the linear model even when a thousand labeled
samples are provided.

C.2. Inversion Comparisons

We evaluate the performance of our model when utilizing
different inversion methods in order to obtain the latent code
for both train and test images. We compare our results on
the human face pose and age estimation tasks using the
CelebA-HQ [8] dataset. Specifically, we compare four GAN
Inversion encoder models - pSp [17], e4e [23], ReStyle-psp
and ReStyle-e4e [1] which uses the former encoders in an
iterative refinement scheme. In all cases we use the official
pre-trained models provided by the authors.

For reference, we also include the most related baseline,
GHFeat-SVM which was introduced in Subsection 4.1. As
a reminder, this baseline was devised based on the same
latent-distance principles but applied in the feature space
of GHFeat [25]. Results are displayed in Figure 2. As can
be seen, our method outperforms GHFeat-SVM regardless
of the choice of inversion method. Furthermore, e4e [23]
is consistently superior to other methods, and e4e-based
methods are superior to pSp-based methods. Tov et al. [23]
demonstrated that there exists a trade-off between distortion
and editability. This tradeoff stems from the ability to invert
images into more semantic regions of the latent space. While
the e4e encoder tends towards preserving such semantics,
pSp is trained with the sole purpose of image reconstruction.
As our method relies heavily on such latent space semantics,

it is unsurprising to see a consistent, even though minor,
advantage towards e4e-based methods.

While superior results are obtained with all inversion
methods, we conclude that our method works best with
semantic preserving encoders and recommend using such.

C.3. Layer-Importance Weighting

We evaluate the contribution of our per-layer latent direc-
tion weighting approach, described in Subsection 3.2 of the
main paper.

We compare our proposed approach with three alterna-
tives for computing distances between latent codes in W+
and boundaries found in W . First, we use a simple model
dubbed “All Layers” in which we compute the distance of
the latent code in each separate layer to the same W-space
boundary. We then use all such distances (18 in total) as fea-
tures for the regression model. Second, we consider a model
dubbed “Euclidean”, in which we duplicate the boundary
over all layers and compute a simple Euclidean distance.
Last, we consider a model which uses only the distance
along the single layer which provides optimal performance.
In the case of poses, for example, this is layer 2. Note that
determining the optimal layer in this manner requires a large
continuously tagged dataset to evaluate against, which may
not be feasible in practical applications. Our own model uses
a weighted distance metric where the contribution of each
layer is scaled according to our semantic-mapping impor-
tance scores determined in an unsupervised manner.

The performance of our method and all alternative is re-
ported in Figure 3. Our weighted model consistently outper-
forms the other alternatives in low-supervision settings, and
achieves similar results to the “All Layers” model with ex-
tensive supervision. This shows that our weighted distances
accurately reflect the importance of the distance across each
layer, without having to rely on the additional supervision
required to determine such a weighting with multiple-feature
regression.

Beside obtaining superior performance, we next demon-
strate that our approach in fact identifies layers that are highly
correlated with a semantic attribute. For this end, we first
fit a set of linear models for the pose estimation task, using
the individual distances along each layer of W+, one at a
time. The results and their R2 coefficients are shown in
Figure 5. Note that obtaining accurate correlation scores in
this manner requires a large labeled dataset and may hence
be unfeasible. Next, in Figure 4 we show the layer impor-
tance scores extracted by our unsupervised method. As can
be seen, our unsupervised layer scoring approach success-
fully identifies layers with high correlation to the semantic
property.
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Figure 1. Quantitative comparison of four different choices for the degree of fitted regression functions. In addition to the linear model
outlined in our method, we evaluate polynomial degrees of 2, 3 and 5. The linear model outperforms the alternatives when only a few
samples are available, and is equivalent for a thousand samples.
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Figure 2. Quantitative comparisons of four different GAN Inversion encoders: e4e [23], pSp [17] and ReStyle-e4e and ReStyle-pSp [1] on
the CelebA-HQ dataset [8].

C.4. Comparing Against Generating a
Continuously-Labeled Data

As discussed in the paper, a popular approach to using
Deep Generative Models for discriminative task is to gen-
erate labeled datasets and use them for training. Although
our method provides means to perform regression directly
in the latent space, it may also be used to generate labeled
datasets. After calibrating the model, we can apply it to
any latent code, including codes simply sampled from the
Gaussian prior. We can thus generate a new dataset from ran-

domly sampled codes, and dictate their labels by the latent
regression model.

We perform an experiment where we generate such a
dataset for human head pose and train a regression CNN
directly on the generated images. To make sure the attribute
varies enough in the generated dataset we perform the fol-
lowing process. We sample a latent code w ∈ W and a
scalar α ∈ [−9, 9] which was observed to be the maximal
range for which the generated image does not degrade in
quality. We then edit the sampled latent code by applying
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Figure 3. Comparing several approaches for calculating latent-
space distances between codes in W+ and boundaries in W . The
”Euclidean” model calculates the Euclidean distance between the la-
tents and a boundary obtained by replicating the W boundary along
all layers of W+. ”All Layers” calculates a per-layer distance and
uses all 18 distances as features. “Layer 2” uses only the distance
calculated on layer 2 of the latent code, which was experimentally
observed to provide the best single-layer results for pose. Finally,
our model uses a weighted distance as outlined in Subsection 3.2
of the main paper. As can be seen, our proposed method is superior
to other method in the few-shot domain and is matched by “All
Layers” only when provided with a thousand labeled samples.

w′ = w+αn⃗. Now, we generate the image I ′ = G(w′) and
infer the head pose by inputting α to the regression model.
For the regression model, we use a model trained with 1000
labeled samples. Repeating this process 45K times, we now
posses a continuously-labeled, roughly balanced generated
dataset. We train multiple CNN backbones for the task of
regression and test them over the annotated CelebA-HQ test
set [8]. The lowest Mean Average Error, 3.23 ± 3.67, was
obtained with EfficientNet-b3 [22]. For comparison, apply-
ing our approach with exactly the same set and supervision
obtained 2.97± 2.76.

We conclude that it is preferable to apply our method di-
rectly to regress test images, rather than generating a labeled
set for downstream training. We speculate that a possible
explanation for the degradation in performance is the do-
main gap. In the generated-dataset approach, the classifier
is trained on a generated dataset and tested on a real one,
without adaptation. On the other hand, in our approach, the
GAN Inversion encoder may mitigate some of that gap. Ad-
ditionally, the generator and inversion encoder are trained
once per-domain while the latent and CNN regressor as well
as the data generation happens once per attribute. As a result,
our approach, requiring just the training of a latent simple
regression model requires roughly x1000 less time to train.

(a) Un-normalized

(b) Normalized

Figure 4. The results of our per-layer importance scores approach
as outlined in Subsection 3.2, for the head pose attribute. (a) Un-
normalized importance scores, before accounting for the scale of
gradients in each layer. (b) Normalized importance scores, after
accounting for gradient scales.

D. Additional Results

D.1. Calibrated Results - Cars

We repeat the pose experiment of section 4.2 on the car
image domain. We compare our model to SSV. Our model
utilizes the official StyleGAN2 [11] LSUN Car [28] pre-
trained checkpoint, and the official e4e [23] inversion en-
coder trained on the train split of Stanford Cars [12]. The
semantic boundary was extracted using InterFaceGAN [20].
SSV was trained as in the original paper, using the Comp-
Cars dataset [26]. Both models were evaluated on the test
split of Stanford Cars, with pose labels acquired through
Pose Contrast [24]. After labeling the test-set images, we
discarded all images with yaw angles exceeding 90◦ in ei-
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Figure 5. Measuring the linear correlation of yaw angle with distance from hyperplane for each layer separately. In each subplot, the x-axis
is the distance of this layer in the latent code from the boundary while the y-axis is the ground truth yaw angle. As can be seen, distance in
first layers are better linearly correlated to head pose than last layers.



ther direction, i.e. we evaluated only on images for which
θyaw ∈ [−90◦, 90◦].

The results are shown in Figure 6. Our model outperforms
SSV over all tested supervision ranges, indicating that it can
generalize well to the car domain.
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Figure 6. Pose estimation error comparisons on the Stanford Car
[12] dataset tagged by Pose Contrast [24], as a function of the
number of labeled images used for calibration.

D.2. Uncalibrated Results

As discussed in the core paper, our method can be applied
to downstream tasks even in the absence of direct supervision.
We demonstrated the applicability of our method to an image
sorting task. Here, we demonstrate an application to ordinal
regression. Specifically, we perform sentiment analysis on
facial images, dividing them into four bins that represent
different levels of contentment.

To perform ordinal regression, we use our method to
calculate an uncalibrated distance score for each image, as
described in section 3. Then, we simply divide the range of
distances into four bins. As can be seen in Figure 7, even
this simple method obtains good results.

0 1 2 3

Figure 7. Ordinal regression applied to sentiment analysis using
our method. Images are divided into bins, from discontent - 0 to
most content - 4. All images were randomly sampled from from
CelebA-HQ [8]. Sentiment is measured by distance from a ’smiling’
semantic boundary, identified by StyleCLIP [14].

In Figures 8 to 13, we show additional sorting results on
cats and dogs, using a StyleGAN-ADA [9] model trained
on the AFHQ dataset [5]. Latent semantics were identified
using SeFA [21]. In Figures 14 to 17, we show additional
sorting results on leaves, using a StyleGAN-ADA model
trained on the Plant-Village [7] dataset. Latent semantics
were identified using InterFaceGAN [20].

D.3. Additional Applications of Unsupervised
Layer-Importance Weighting

We further investigate the effects of our layer-importance
weighting approach by considering its effects on image edit-
ing. To do so, we discover pose editing directions in W for
the FFHQ [11] and AFHQ Cat [9] models. The directions
were discovered using InterFaceGAN [20] and SeFA [21]
respectively. We then invert real images into W+ and edit
them in two manners. First, we use the conventional way
of applying the linear editing direction equally to all layers
along W+. Second, we apply the linear direction differently
in each layer by multiplying the step size with the per-layer
importance score.

The results are shown in Figure 4. As can be seen, by
weighting the layers appropriately we can increase the level
of disentanglement and better avoid spurious changes. For
example, the conventional editing of head pose for humans
also wrongly affects the eye-gaze – maintaining eye-contact
with the viewer. For cats, the pose direction affects the
“identity” and background. Using our per-layer weighting,
these effects are mitigated.

These results further highlight the need for appropriate
layer weighting when calculating distances in different latent-
spaces. If we were to simply calculate the distance in the
naı̈ve manner, our pose regression results would be affected
by these entangled properties - e.g. gaze or even background
color.

E. Complementing Experiments’ Details
We provide additional details about experiments con-

ducted in the main paper.

E.1. Accuracy of Trained SVMs

In Subsection 4.1 of the paper, we demonstrate that dis-
tances in the latent space of the GAN are more semantically
meaningful and better behaved than equivalent distances
in alternative feature spaces. For this end, we train SVMs
in all feature spaces. In Table 1 we report the accuracy of
those SVMs on validation sets. As can be seen, the gap
in performance for the task of regression cannot be easily
explained by the performance of the SVM as a binary classi-
fier. This is further evidence that StyleGAN’s latent space
possesses unique properties which make it suitable for the
task of regression.



E.2. What Points to Label?

In order to calibrate the latent distances to actual real-
world values, a few labeled samples are required. These
labeled samples are then used to train a simple linear regres-
sion model. In some real-world scenarios, one won’t have
pre-defined disjoint sets of labeled and unlabeled samples.
Rather, as most datasets form, at first the dataset is simply

a collection of unlabeled samples and only later will those
be annotated. While our method performs better as it gets
more labeled samples, working with a few labeled samples
is usually preferred. We thus provide some simple practical
suggestions as to what samples one should label. Follow-
ing these suggestions is increasingly more important as less
points are sampled.

First we suggest to invert the unlabeled dataset to the

Figure 8. Sorting images from AFHQ-dog [5] using a “fur fluffiness” semantic directions extracted by SeFA [21].

Figure 9. Sorting images from AFHQ-dog [5] using a “head pitch” semantic directions extracted by SeFA [21].

Figure 10. Sorting images from AFHQ-dog [5] using a “head yaw” semantic directions extracted by SeFA [21].



Figure 11. Sorting images from AFHQ-cat [5] using an “age” semantic directions extracted by SeFA [21].

Figure 12. Sorting images from AFHQ-cat [5] using a “head pitch” semantic directions extracted by SeFA [21].

Figure 13. Sorting images from AFHQ-cat [5] using a “head yaw” semantic directions extracted by SeFA [21].

latent space and obtain the distances from the hyperplane
corresponding to the semantic latent direction, which results
in a distribution of distances. This process does not require
any labels. Now, we suggest choosing and labeling a set
which is roughly evenly-spaced throughout the center of the
distribution. There are two motivations for this sampling
strategy, stemming from a single simple principle - sampling
points that best represent the distribution. First, samples on

the edge of the distribution are more likely to be outliers.
Latent outliers may come about when the original image is
in itself an outlier in the image distribution. Thus, discarding
the noisy edges and sampling from the center of distribution
is likely to better represent the dataset. Second, sampling
points which are ”close” to each other on the distance axis, is
prone to error. The linear relationship between the attribute
and distance is modeled by y = a·d+b+ε where a, b are the



Table 1. Validation accuracy of SVM baseline models operating
on pose and age, using the different feature spaces described in
Subsection 4.1. As can be seen, most model are decent classifiers.

Feature space Pose Age
Ours 0.93 0.82
Pixel 0.87 0.74
Binary-cls 0.91 0.88
GHFeat [25] 0.91 0.83
ImageNet [29] 0.73 0.84
ID [6] 0.65 0.85
SwaV [3] 0.71 0.88

function coefficients and ε is an error term. Consider the case
of sampling two points with distances d1, d2. When ∆d =

d1−d2 is small, it may be the case that ε > a·∆d+b. In such
case, the noise in the observed attribute may overwhelm any
signal due to the modified latent-distance, and a linear model
fit to these points will fail to predict the underlying a, b.
Sampling a set which is roughly evenly-spaced maximizes
the minimal distance between any two points.

We follow these guidelines when conducting all exper-
iments described in the paper. For the center, we consider
95% of the data. For evenly-spaced distances we first ob-
serve that for n points sampled from a uniform distribution
over [a, b], the minimal distance between a pair of samples is
smaller or equal to b−a

n . However, choosing such a minimal
distance will only allow for, at most, one sampled set. To
allow greater flexibility in the choice of samples, we loosen
the restriction, and sample points whose minimal allowed

Figure 14. Sorting images from Plant-Village [7] using sick-to-healthy semantic directions extracted by InterFaceGAN [20]. To facilitate
easy visual comparisons, all sick leaves have the same disease - “Early Blight”.

Figure 15. Sorting images from Plant-Village [7] using sick-to-healthy semantic directions extracted by InterFaceGAN [20]. To facilitate
easy visual comparisons, all sick leaves have the same disease - “Black Rot”.



Figure 16. Sorting images from Plant-Village [7] using sick-to-healthy semantic directions extracted by InterFaceGAN [20]. To facilitate
easy visual comparisons, all sick leaves have the same disease - “Rust”.

Figure 17. Sorting images from Plant-Village [7] using sick-to-healthy semantic directions extracted by InterFaceGAN [20]. To facilitate
easy visual comparisons, all sick leaves have the same disease - “Late Blight”.

difference is b−a
n1.3 .

E.3. Regression Model Regularization

Our final regression model is a simple linear regression
model. However, there is still room to choose regularization.
We experiment with our model without regularization, with
L1 regularization (i.e. Lasso), L2 regularization (i.e. Ridge)
or both (i.e. ElasticNet). We find that there’s only a slight
difference in the few-shot setting and it diminishes as the
number of samples increases, as demonstrated in Figure 19.
We used ElasticNet regularization in all experiments pre-
sented in the paper. We use the default penalty weighting
provided by scikit-learn [15].

F. Linearity Origin Hypothesis

Our method uses linear regression to calibrate distance
features to real-world values. This choice was motivated by
empircal results (see Subsection C.1). Nevertheless, we hy-
pothesize on the origin of this property. As datasets are non
uniform, the model is tasked with representing values with
different densities. One solution would be to “allocate” more
space in W for more frequent values, creating a non-linear
space. However, the model already has a mechanism to rep-
resent non-uniform densities - through the original, Gaussian
distribution of Z space and it’s non-linear mapping into W .
We thus speculate the model has no incentive to model den-
sities in the W space itself. Instead, it can model a simpler,
linear space, in order to make the generative process sim-
pler. Such a scenario is in line with the unwarping intuition
provided in the original StyleGAN paper [10].
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Figure 18. Using the layer-importance weighting to improve pose
editing. Our approach reduces changes in unrelated properties.
In the case of human faces, we observe that layer weighting can
prevent the gaze from changing along with the pose. In the case of
cats, large pose changes lead to severe changes in background and
identity. Appropriate layer weighting reduces these effects.
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Figure 19. We compare the results of our approach using different
types of regularization on the simple linear regression model. As
can be observed, only slight difference exist when two calibration
points are used, and the difference diminishes as more points are
sampled.

Table 2. Datasets and models used in our work and their respective
licenses.

Dataset Source License
FFHQ [10] CC BY-NC-SA 4.0*

CelebA-HQ [8] CC BY-NC 4.0
AFHQ [5] CC BY-NC 4.0
Stanford Cars [12] ImageNet License
CompCars [26] Non-Commercial Research
CACD [4] Academic Research
PlantVillage [7] CC0 1.0

(a) Datasets

Model Source License
StyleGAN2 [11] Nvidia Source Code License-NC
GHFeat [25] No License
SSV [13] Nvidia Source Code License-NC
Scikit-Learn [15] BSD 3-Clause
WHENet [30] BSD 3-Clause
DEX [18] No License
pSp [17] MIT License
e4e [23] MIT License
ReStyle [1] MIT License
InterFaceGAN [20] MIT License
SeFa [21] MIT License
StyleCLIP [14] MIT License
CLIP [16] MIT License
PoseContrast [24] MIT License
FSA [27] Apache License V2.0
StyleGAN2-pytorch [19] MIT License
StyleGAN-ADA [9] Nvidia Source Code License

(b) Models

G. Licenses and privacy
The datasets and models used in our work and their re-

spective licenses are outlined in Table 2.
Some of the datasets in use, an in particular FFHQ [10],

CelebA-HQ [8] and CACD [4], contain personally identifi-
able data in the form of face images.

We have not reached out to receive consent from the indi-
viduals portrayed in the images. However, all three image
sets are composed of publicly available celebrity images or
faces of individuals crawled from flicker, all of which were
uploaded under permissive licenses which allow free use,
redistribution, and adaptation for non-commercial purposes.
The curators of all sets provide contact details for individuals
who wish to have their images removed from the set.

H. User Study
In this section we provide all the details of our user study.
The user study was conducted through

https://freeonlinesurveys.com/. It was performed over a
period of 5 days, with a total of 62 different responders.
Individual questions saw anywhere from 20 to 62 responses

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://image-net.org/download.php
http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/
https://bcsiriuschen.github.io/CARC/
https://creativecommons.org/publicdomain/zero/1.0/
https://nvlabs.github.io/stylegan2/license.html 
https://nvlabs.github.io/stylegan2/license.html 
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/MIT
https://nvlabs.github.io/stylegan2-ada-pytorch/license.html
https://freeonlinesurveys.com/


Table 3. User study answer key and the number of responders that
picked each answer

Question Ours CLIP Random
Hair color

1 Bottom (46) Top (16) Middle (0)
2 Middle (50) Top (11) Bottom (1)
3 Bottom (34) Top (27) Middle (1)
4 Middle (53) Top (9) Bottom (0)
5 Bottom (45) Middle (17) Top (0)

Makeup

6 Bottom (45) Top (8) Middle (4)
7 Bottom (35) Top (9) Middle (13)
8 Middle (36) Bottom (17) Top (4)
9 Bottom (41) Middle (11) Top (5)

10 Top (44) Middle (7) Bottom (6)
Expression

11 Bottom (40) Top (13) Middle (2)
12 Bottom (46) Top (9) Middle (0)
13 Bottom (38) Top (15) Middle (2)
14 Top (19) Bottom (35) Middle (1)
15 Bottom (4) Middle (47) Top (4)

Hair length

16 Top (52) Bottom (1) Middle (2)
17 Middle (46) Top (1) Bottom (8)
18 Top (33) Middle (0) Bottom (22)
19 Middle (50) Bottom (1) Top (4)
20 Middle (52) Top (3) Bottom (0)

(a) Human faces

Question Ours SSV Random
Yaw

21 Bottom (4) Middle (18) Top (1)
22 Top (22) Middle (0) Bottom (1)
23 Top (20) Middle (2) Bottom (1)

Pitch

24 Bottom (17) Middle (0) Top (3)
25 Top (16) Bottom (3) Middle (1)
26 Top (17) Bottom (1) Middle (2)
27 Middle (16) Bottom (2) Top (2)

(b) Cats

(see Table 3 for exact numbers). All responders were unpaid
volunteers which responded (anonymously) to a link shared
among colleagues and acquaintances of the authors.

We used a three-alternative forced choice setting. Users
were provided with randomly sampled sets of 10 images,
sorted in three manners - once using our method, once by

randomly assigning an order and once by using a dedicated
baseline. For each question, the visual order of the three
sorting options was randomized. Users were asked to choose
the order that better matches a textual description.

For the human face domain, we used the same textual
prompts as Figure 5 in the main paper, with 5 randomly
sampled image sets for each prompt. For a baseline, we
sorted the images according to their cosine-distances from
the same textual prompts directly in the CLIP [16] embed-
ding space. For the cat domain we used the pitch and yaw
directions displayed in Figure 7 in the main paper and for a
baseline we used pose predictions from SSV [13] trained on
AFHQ-Cat [5].

The questions and their associated image sets are shown
in Figure 20. In Table 3 we provide the list of the methods
used to generate each row of each question (i.e. the answer
key), along with the number of responders who chose each
answer.



Hair Color 

Choose the row in which images are better sorted from black hair (left) to blonde hair (right): 

1)  

 
2)  

 
3)  

 
4)  

 
5)  

 

Figure 20. All questions asked in our survey and their associated images. Page 1/6.



Makeup 

Choose the row in which images are better sorted from less makeup (left) to more makeup (right): 

6)  

 
7)  

 
8)  

 
9)  

 
10)  

 

Figure 20. All questions asked in our survey and their associated images. Page 2/6.



Expression 

Choose the row in which images are better sorted from a sad expression (left) to a happy expression (right): 

11)  

 
12)  

 
13)  

 
14)  

 
15)  

 

Figure 20. All questions asked in our survey and their associated images. Page 3/6.



Hair Length 

Choose the row in which images are better sorted from short hair (left) to long hair (right): 

16)  

 
17)  

 
18)  

 
19)  

 
20)  

 

Figure 20. All questions asked in our survey and their associated images. Page 4/6.



Cats Yaw 

Choose the row in which images are better sorted according to their left-to-right head angle (yaw): 

 

21)  

 
22)  

 
23)  

 

 

 

 

 

 

 

Figure 20. All questions asked in our survey and their associated images. Page 5/6.



Cats Pitch 

Choose the row in which images are better sorted according to their up-to-down head angle (pitch): 

 

24)  

 
25)  

 
26)  

 
27)  

 

Figure 20. All questions asked in our survey and their associated images. Page 6/6.
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