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This supplementary material is outlined as follows. References to the main paper (sections, equations, and figures) are
highlighted in blue.

• Section 1 shows the description of the equation for chromatic pixels (Eq. 7).

• Section 2 is about how to handle the inherent ambiguity of the angle of linear polarization (AoLP) described in Sec. 3.5.

• Section 3 describes the detail of our evaluation data.

• Section 4 explains the settings we used for the existing methods.

• Section 5 describes the effect of different patch sizes for multi-illumination scenes shown in Sec. 5.

• Section 6 is the flow chart of our illumination estimation.

1. Details of equation for chromatic pixels
As described in Sec. 3.4, we assume a white-balanced color of a pixel becomes the opposite against its degree of linear

polarization (DoLP) color. However, DoLP depends on the specular and diffuse Mueller matrices (𝑀𝑠 , 𝑀𝑑) as well as the
specular and diffuse reflectances (𝑟𝑠 , 𝑟𝑑 (_)), as shown in Eq. 3. As a result, directly comparing the white-balanced color
i𝑾𝑩 = (𝑘𝑅𝑖R, 𝑖G, 𝑘𝐵𝑖B) and DoLP (𝑑𝑅, 𝑑𝐺 , 𝑑𝐵) does not provide accurate results. Therefore, to disregard the domain
difference between the white-balanced color and DoLP, they are subtracted by their averages and normalized by their 𝑙2
norms, described in Eq. 7.

As shown in Fig. 3, this formulation estimates illumination colors (𝑘𝑅, 𝑘𝐵) when observing two or more pixels. However,
the formulation still includes several problems to be solved. Firstly, we assume the specular and diffuse polarization have
different AoLPs, but the differences depend on the light and view directions. Therefore, when the differences are very
small, the reliability of Eq. 7 could decrease. Considering the conventional polarization models have assumed that the AoLP
differences are always 90 degrees [12], it is reasonable to assume that some differences always exist. Secondly, when scenes
only include a few diffuse reflectances 𝑟𝑑 , the obtained simultaneous equations become unstable. We would like to establish
a more accurate and stable formulation for the chromatic pixels in the future.

2. Ambiguity of AoLP
In our calculation, AoLP is determined between 0◦ and 180◦. When we compute 𝑤

𝑎𝑜𝑙𝑝

𝑎𝑐ℎ
, we define 𝑥 and 𝑦 in Eq. 9 as

follows:
𝑥 = min {|𝐴𝑜𝐿𝑃R − 𝐴𝑜𝐿𝑃G | , 180◦ − |𝐴𝑜𝐿𝑃R − 𝐴𝑜𝐿𝑃G |} (1)

𝑦 = min {|𝐴𝑜𝐿𝑃B − 𝐴𝑜𝐿𝑃G | , 180◦ − |𝐴𝑜𝐿𝑃B − 𝐴𝑜𝐿𝑃G |} . (2)

Note that this kind of problem in AoLP is often referred to as an ambiguity problem in shape-from-polarization methods [2,6].
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3. Evaluation data
3.1. Position of color chart

The evaluation data included a few multi-illumination scenes. In these scenes, firstly, we located a color chart in several
positions and acquired corresponding white-balanced images. Secondly, we manually selected images that were the most
suitable for human preferences. For instance, Fig. 1a and Fig. 1b represent the white-balanced images corrected by a color
chart located on shadow and sunlit areas, respectively. Given that this scene was captured in the daytime, Fig. 1b is preferable
to our perception. So we chose Fig. 1b as the ground truth. Note that we applied this procedure only for a few scenes in the
data, and the difference between Fig. 1a and Fig. 1b was the most significant in those multi-illumination scenes. When we
excluded these multi-illumination scenes and the blue-sky ones, the mean angular error of C4 [13] was 3.38, and ours was
3.24.

Additionally, we paid close attention to that a pair of images with and without the color chart shares the same illuminations.
Note that the evaluation results were almost the same when we used the images including a color chart as our target images.

(a) White-balanced image 1. (b) White-balanced image 2.

Figure 1. For multi-illumination scenes, a color chart was located on several places. Firstly we acquire the images corresponding to each
color chart, and then chose one result that were the most suitable for human preferences.

3.2. Acquire raw-RGB from capturing

For both cameras, we subtracted the dark current using a built-in function of the cameras. For the polarization camera FLIR
BFS-U3-51S5PC-C, we replaced defected pixels with the average of the surrounding pixels of the same polarizer angles. For
the polarization-demosaicking method of the polarization sensor, we used a method that considers frequency of pixel values
by using the pixels located near the target pixel [7].

3.3. Personal information

All human faces included in our evaluation data were collected from those who approved the data usage. For license plates
of cars, we filled the pixels with zero. When estimating illuminations, we input the filled pixels as they are. Note that only
one image included the license plate, and the area was small, shown in Fig. 2.

Figure 2. License plates were filled with zero.



4. Settings for existing methods
For White-patch [8], Gray-world [4], and Chen et al. [5], we used parameters between 0 to 5, which determines the

percentile of usable pixel intensity, and then chose the best results. For Gray-edge [11], we used the first derivative of images,
which is often referred to as 1st-order Gray-edge. For FFCC [3], we estimated the illumination colors using all seven models
provided by the authors and chose the best results. For FC4 [9], we used an implementation available from Rizzo [9]. For
C4 [13], we applied the SqueezeNet backbone and used the average values of three estimations. Additionally, we set the dark
current in the code as zero because it is already subtracted in our evaluation data. For C5 [1], it is necessary to input several
images captured by the same cameras. Therefore, we separated our evaluation data into two groups according to the used
camera and input seven images, which was the default number provided by the authors. Furthermore, we averaged the results
of ten estimations for C5. For the method disregarding the diffuse polarization, we simply applied Fischer et al. [10] to each
pixel and averaged them. Note that we excluded edges using 𝑤

𝑎𝑜𝑙𝑝

𝑐ℎ
with the same parameter when averaging the results. We

did not include this result to our main paper because Fischer et al. [10] has several unknown parameters and we could not
assure the fair comparison.

5. Effect of patch sizes for multi-illumination scenes
As described in Sec. 3.3, we can estimate the illumination color from only one pixel for achromatic pixels. Furthermore,

theoretically, we can reconstruct the illumination color from at least two pixels for chromatic pixels, as shown in Sec. 3.4.
However, it is less likely to contain achromatic pixels when we use smaller patches. Additionally, the variation of diffuse

reflectances included in the patches becomes smaller; thus, the simultaneous equations obtained by Eq. 8 become more
unstable. Therefore, in the experiments shown in Sec. 5, we manually tried a few sizes of patches and subjectively selected
the most natural results. We would like to investigate how to select the patch sizes automatically in the future.

6. Flow chart of estimating illuminations
Figure 3 is a flow chart describing the process from demosaicking to the final result l̂. 𝑚(𝑢, 𝑣), 𝑛(𝑢, 𝑣), and 𝑜(𝑢, 𝑣) denote

(𝑑B − 𝑑G)𝑖R, (𝑑G − 𝑑R)𝑖B, and −(𝑑R − 𝑑B)𝑖G in Eq. 8, respectively. 𝑢 and 𝑣 represent a pixel of an input image. As described
in Sec. 3.4, because Eq. 8 assumes that specular polarization is larger than diffuse polarization, the estimated illuminations are
less reliable than the one from achromatic pixels. Therefore, we introduced a fixed parameter 𝛼 to consider the difference in
reliability. However, as mentioned in Sec. 5, estimated results from chromatic pixels are more accurate when scenes include
blue skies. It is our future work to develop a more novel algorithm to determine 𝛼 flexibly.

Compute weight 𝑤𝑤𝑎𝑎𝑎𝑎𝑎(𝑢𝑢, 𝑣𝑣)

𝑤𝑤𝑎𝑎𝑎𝑎𝑎(𝑢𝑢, 𝑣𝑣) = 𝑤𝑤𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � 𝑤𝑤𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 � 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Compute illumination of achromatic pixels 𝒍𝒍𝑎𝑎𝑎𝑎𝑎

𝑙𝑙𝑎𝑎𝑎𝑎𝑎,𝑅𝑅 =
∑𝑢𝑢,𝑣𝑣 𝑤𝑤𝑎𝑎𝑎𝑎𝑎 𝑢𝑢,𝑣𝑣 𝑖𝑖𝑅𝑅(𝑢𝑢,𝑣𝑣)/𝑖𝑖𝐺𝐺(𝑢𝑢,𝑣𝑣)

∑𝑢𝑢,𝑣𝑣 𝑤𝑤𝑎𝑎𝑎𝑎𝑎 𝑢𝑢, 𝑣𝑣

𝑙𝑙𝑎𝑎𝑎𝑎𝑎,𝐵𝐵 =
∑𝑢𝑢,𝑣𝑣 𝑤𝑤𝑎𝑎𝑎𝑎𝑎 𝑢𝑢,𝑣𝑣 𝑖𝑖𝐵𝐵(𝑢𝑢, 𝑣𝑣)/𝑖𝑖𝐺𝐺(𝑢𝑢, 𝑣𝑣)

∑𝑢𝑢,𝑣𝑣 𝑤𝑤𝑎𝑎𝑎𝑎𝑎 𝑢𝑢, 𝑣𝑣

Compute weight 𝑤𝑤𝑎𝑎𝑎 𝑢𝑢, 𝑣𝑣

𝑤𝑤𝑎𝑎𝑎(𝑢𝑢, 𝑣𝑣) = 𝑤𝑤𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � 𝑤𝑤𝑎𝑎𝑎

𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 � 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Compute illumination of chromatic pixels 𝒍𝒍𝑎𝑎𝑎

𝑤𝑤𝑎𝑎𝑎 𝑢𝑢0, 𝑣𝑣0 𝑚𝑚(𝑢𝑢0,𝑣𝑣0) 𝑤𝑤𝑎𝑎𝑎 𝑢𝑢0,𝑣𝑣0 𝑛𝑛(𝑢𝑢0, 𝑣𝑣0)
𝑤𝑤𝑎𝑎𝑎 𝑢𝑢1, 𝑣𝑣0 𝑚𝑚(𝑢𝑢1,𝑣𝑣0) 𝑤𝑤𝑎𝑎𝑎 𝑢𝑢1,𝑣𝑣0 𝑛𝑛(𝑢𝑢1, 𝑣𝑣0)

⋮ ⋮

𝑘𝑘𝑅𝑅
𝑘𝑘𝐵𝐵

=
𝑤𝑤𝑎𝑎𝑎 𝑢𝑢0,𝑣𝑣0 𝑜𝑜(𝑢𝑢0,𝑣𝑣0)
𝑤𝑤𝑎𝑎𝑎 𝑢𝑢1,𝑣𝑣0 𝑜𝑜(𝑢𝑢1,𝑣𝑣0)

⋮

Compute illumination �̂�𝒍

�̂�𝒍 = 𝛼𝛼𝒍𝒍𝑎𝑎𝑎𝑎𝑎 + 1 − 𝛼𝛼 𝒍𝒍𝑎𝑎𝑎
Demosaicking

𝒊𝒊0, 𝒊𝒊45, 𝒊𝒊90, 𝒊𝒊135
Compute

DoLP, AoLP

Figure 3. Flow chart describing the process from demosaicking to the final result l̂.
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