On the Integration of Self-Attention and Convolution
Supplementary Material

A. Model Architectures

We summarize the architectures of ResNet 26/38/50 [2],
SAN 10/15/19 [9], PVT-T/S [7], Swin-T/S [5], and their
respective ACmix version in Tab 2~5. For fair comparison,
we only substitute the original 3 x 3 convolution or self-
attention module with our proposed operator in the modified
models.

B. Dataset and Training Setup

ImageNet. ImageNet 2012 [!] comprises 1.28 million
training images and 50,000 validation images from 1000
different classes. For ResNet-based models, we follow the
training schedule in [9] and train all the models for 100
epochs. We use SGD with batchsize 256 on 8 GPUs. Co-
sine learning rate is adopted with the base learning rate set
to 0.1. We apply standard data augmentation, including
random cropping, random horizontal flipping and normal-
ization. We use label smoothing with coefficient 0.1. For
experiments on Transformer-based models, including PVT
and Swin-Transformer, we follow training configurations in
the original paper.

COCO. COCO dataset [4] is a standard object detection
benchmark and we use a subset of 80k samples as training
set and 35k for validation. For ResNet and SAN models,
we train the network by SGD and 8 GPU are used with a
batchsize of 16. For PVT and Swin-Transformer models,
we train the network by adamw. Backbone networks are
respectively pretrained on ImageNet dataset following the
same training configurations in the original paper. We fol-
low the ”1x” learning schedule to train the whole network
for 12 epochs and divide the learning rate by 10 at the 8th
and 11th epoch respectively. For several transformer-based
models, we follow the configurations in the original paper,
and additionally experiment ”3x” schedule with 36 epochs.
We apply standard data augmentation, that is resize, ran-
dom flip and normalize. Learning rate is set at 0.01 and
linear warmup is used in the first 500 iterations. We fol-
low the ”1x” learning schedule training the whole network
for 12 epochs and divide the learning rate by 10 at the 8th
and 11th epoch respectively. For several transformer-based
models, we follow the configurations in the original paper,

and test with ”3x” schedule. All mAP results in the main
paper are tested with input image size (3, 1333, 800).

ADE20K. ADE20K [10] is a widely-used semantic seg-
mentation dataset, containing 150 categories. ADE20K has
25K images, with 20K for training, 2K for validation, and
another 3K for testing. For two baseline models, PVT and
Swin-Transformer, we follow the training configurations in
their original paper respectively. For PVT, we implement
the backbone models on the basis of Semantic FPN [3]. We
optimize the models using AdamW with an initial learn-
ing rate of le-4 for 80k iterations. For Swin-Transformer,
we implement the backbone models on the basis of Uper-
Net [8]. We use the AdamW optimizer with an initial learn-
ing rate of 6e-5 and a linear warmup of 1,500 iterations.
Models are trained for a total of 160K iterations. We ran-
domly resize and crop the image to 512 x 512 for training,
and rescale to have a shorter side of 512 pixels during test-

ing.

C. Hyper-parameters

For ResNet-ACmix models, we set N = 4 for all the
experiments.

For SAN-ACmix models, the channel dimension for
queries, keys and values are different in the original model
[9]. Given input features with channel dimension C, queries
and keys are projected to features with C'/4 channels, while
values are projected to features with C' channels. Therefore,
when implementing our ACmix operator, we divide values
into 4 groups, where the divided groups have the same chan-
nel dimension C'/4. The following self-attention and convo-
lution operations follow the same parchwise attention in [9]
and the same designing pipeline as we stated in Sec.4, re-
spectively.

For PVT-ACmix and Swin-ACmix models, we follow
the configurations in the original model [5].

ko =T and k.=3 is set for all experiments, unless stated
otherwise.

D. Positional Encoding

Positional encoding is widely adopted in self-attention
modules, while not used in SAN and PVT models. There-

fore, we follow this setting and only adopt positional en-
coding in the ResNet-ACmix models and Swin-ACmix.
Specifically, the popular relative positional encoding [6] is
adopted when computing the attention weights:

A(qij, kav) = S?\f/’ﬁ(?;i;X ((qg}kab + Bij,ab)/\/g) , (D

where ¢, k, B represent queries, keys and relative positional
encodings respectively. We didn’t include positional en-
coding in the analysis for computation complexity in the
Tab.1 of the main paper, as the patchwise attention pro-
posed in [9] demonstrate the effectiveness of self-attention
modules without adopting it. Nevertheless, the computation
cost for positional encoding is also linear with respect to
the channel dimension C, which is also comparably minor
to the feature projection operations. Therefore, considering
the positional encoding doesn’t affect our main statement.

E. Practical Costs for Other Models

We also summarize the practical FLOPs and Parameters
for convolution, self-attention and ACmix based on various
models introduced in the Experiment section. The num-
bers are shown in Tab.1. Similar to ResNet 50, more than
60% of the computation are performed at Stage I of the self-
attention module in SAN and Swin models. Meanwhile,
it also demonstrates that ACmix only introduces minimum
computational cost to integrate both convolution and self-
attention modules based on various model structures.

ResNet 50| SAN 19 | Swin-T
Module Stage| GFLOPs | GFLOPs | GFLOPs
Convolution 1.85 (99%) i i
0.01 (1%) - -
Self-Attention 0.96 (83%)[1.29 (64%)(1.04 (68%)
0.19 (17%)10.72 (36%)|0.49 (32%)
ACmix 0.96 (73%)[1.29 (60%)|1.04 (62%)
0.35 (27%)]0.89(40%) |0.64 (38%)

Table 1. Practical FLOPs and Parameters for different modules
based on various models. Numbers within the brackets are their
fractions of the whole module. SAN 19 and Swin-T models are
designed with all self-attention modules, thus not applicable for
the traditional convolution module.

References

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009. 1

[2

—

3

—

[4

—

(5

—

[6

—_

[7

—

[8

—

[9

—

(10]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 1

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollér. Panoptic feature pyramid networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6399-6408, 2019. 1

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV,2014. 1

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021. 1

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-
attention in vision models. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. 2

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions. arXiv preprint
arXiv:2102.12122,2021. 1

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 418-434, 2018. 1

Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Explor-
ing self-attention for image recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10076-10085, 2020. 1, 2

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633-641,
2017. 1

stage| output ResNet-26 (ACmix) ResNet-38 (ACmix) ResNet-50 (ACmix)
resl 112 x 112 7 x 7 conv, 64, stride 2 7 x 7 conv, 64, stride 2 7 X 7 conv, 64, stride 2
3 x 3 max pool, stride 2 3 x 3 max pool, stride 2 3 x 3 max pool, stride 2
res2| 56 x 56 1 x 1 conv, 64 1 x 1 conv, 64 1 x 1 conv, 64
3 x 3 conv (ACmix), 64 | x1 3 x 3 conv (ACmix),64 | x2| | 3 x 3 conv (ACmix),64 | x3
1 x 1 conv, 256 1 x 1 conv, 256 1 x 1 conv, 256
1 x 1 conv, 128 1 x 1 conv, 128 1 x 1 conv, 128
res3 | 28 x 28 3 x 3 conv (ACmix), 128 | x2|| 3 x 3 conv (ACmix),128 | x3|| 3 x 3 conv (ACmix), 128 | x4
1 x 1 conv,512 1 x 1 conv, 512 1 x 1 conv, 512
1 x 1 conv, 256 1 x 1 conv, 256 1 x 1 conv, 256
res4 | 14 x 14 || 3 x 3 conv (ACmix), 256 | x4|| 3 x 3 conv (ACmix),256 | x5|| 3 x 3 conv (ACmix),256 | x6
1 x 1 conv, 1024 1 x 1 conv, 1024 1 x 1 conv, 1024
1 x 1 conv,512 1 x 1 conv, 512 1 x 1 conv, 512
res5| 7Tx7 3 x 3 conv (ACmix), 512 | x1|| 3 x 3 conv (ACmix),512 | x2|| 3 x 3 conv (ACmix),512 | x3
1 x 1 conv, 2048 1 x 1 conv, 2048 1 x 1 conv, 2048
1x1 global average pool global average pool global average pool

1000-d fc, softmax

1000-d fc, softmax

1000-d fc, softmax

Table 2. Architectures of ResNet-based models with and without ACmix modules.

layers output SAN-10 (ACmix) SAN-15 (ACmix) SAN-19 (ACmix)
Input 224 x 224 1 x 1 conv, 64 1 x 1 conv, 64 1 x 1 conv, 64
Transition 1112 x 112 2 x 2 max pool, stride 2 2 x 2 max pool, stride 2 2 x 2 max pool, stride 2
1 x 1 conv, 64 1 x 1 conv, 64 1 x 1 conv, 64
Block 112 x 112 3 x 3 sa (ACmix), 16 " 3 x 3 sa (ACmix), 16 3 3 x 3 sa (ACmix), 16 3
1 x 1 conv, 64 1 x 1 conv, 64 1 x 1 conv, 64
Transition | 56 x 56 2 x 2 max pool, stride 2 2 x 2 max pool, stride 2 2 x 2 max pool, stride 2
1 x 1 conv, 256 1 x 1 conv, 256 1 x 1 conv, 256
Block 56 x 56 7 x 7 sa (ACmix), 64 1 7 x 7 sa (ACmix), 64 %9 7 x 7 sa (ACmix), 64 3
1 x 1 conv, 256 1 x 1 conv, 256 1 x 1 conv, 256
Transition | 28 x 28 2 X 2 max pool, stride 2 2 X 2 max pool, stride 2 2 X 2 max pool, stride 2
1 x 1 cony, 512 1 x 1 cony, 512 1 x 1 conv, 512
Block 98 x 98 7 x 7 sa (ACmix), 128 " 7 x 7 sa (ACmix), 128 3 7 x 7 sa (ACmix), 128 4
1 x 1 conv, 512 1 x 1 conv, 512 1 x 1 conv, 512
Transition | 14 x 14 2 % 2 max pool, stride 2 2 x 2 max pool, stride 2 2 x 2 max pool, stride 2
1 x 1 conv, 1024 1 x 1 conv, 1024 1 x 1 conv, 1024
Block 14 % 14 7 x 7 sa (ACmix), 256 4 7 x 7 sa (ACmix), 256 .5 7 x 7 sa (ACmix), 256 <6
1 x 1 conv, 1024 1 x 1 conv, 1024 1 x 1 conv, 1024
Transition T 7 2 X 2 max pool, stride 2 2 x 2 max pool, stride 2 2 X 2 max pool, stride 2
1 x 1 conv, 2048 1 x 1 conv, 2048 1 x 1 conv, 2048
Block _—r 7 x 7 sa (ACmix), 512 1 7 x 7 sa (ACmix), 512 2 7 x 7 sa (ACmix), 512 "
1 x 1 conv, 2048 1 x 1 conv, 2048 1 x 1 conv, 2048
Classification] 1 x 1 global average pool global average pool global average pool

1000-d fc, softmax

1000-d fc, softmax

1000-d fc, softmax

Table 3. Architectures of SAN-based models with and without ACmix modules.

stage | output layer name PVT-T (ACmix) PVT-S (ACmix)
Patch Embeddmg P1 = 4, 01 =64 Pl = 4, Cl = 64
resl | 56 x 56 By =8 . B =8 .
Transformer Ny =1 | (ACmix) x 2 Ny =1 | (ACmix) x 3
E, =38 E, =38
Patch Embedding P,=2; Cy =128 P, =2; Cy =128
res2 | 28 x 28 Ry =4) Ry =4)
Transformer No =2 | (ACmix) x 2 No =2 | (ACmix) x4
EQ = 8 E2 = 8
Patch Embedding P; =2; C3 =320 P; =2; C3 =320
res3 | 14 x 14 Ry =2 . Ry =2 .
Transformer N3 =5 | (ACmix) x 2 N3 =5 | (ACmix) x 6
Es=14 Es=14
Patch Embeddlng P4 = 2, 04 =512 P4 = 27 04 =512
res4 77 Ry =1) Ry=1 .
Transformer Ny =8 | (ACmix) x 2 Ny =8 | (ACmix) x 3
E,=4 E,=14
Table 4. Architectures of PVT-based models with and without ACmix modules.
stage | output Swin-T (ACmix) Swin-S (ACmix)
concat 4 x 4,96, LN concat 4 x 4, 96, LN
resl | 56 x 56 i i
7. X 7 window (ACmix) x 2 7.>< 7 window (ACmix) x 2
dim 96, head 3 dim 96, head 3
concat 2 x 2, 192, LN concat 4 x 4, 192, LN
res2 | 28 x 28 i i
? X 7 window (ACmix) x 2 7 X 7 window (ACmix) x 2
dim 192, head 6 dim 192, head 6
concat 2 x 2, 384, LN concat 4 x 4, 384, LN
res3 | 14 x 14 i i
'7 X 7 window (ACmix) x 6 .7 X 7 window (ACmix) x 18
dim 384, head 12 dim 384, head 12
concat 2 x 2, 768, LN concat 4 x 4, 768, LN
resd <7 7 x 7 window 7 x 7 window

dim 768, head 24

(ACmix) x 2

dim 768, head 24

(ACmix) x 2

Table 5. Architectures of Swin-based models with and without ACmix modules.

