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In this supplementary material, we discuss the main limi-
tations of our work with possibilities for extensions, analyze
some of GBC’s covariance regularization approaches, and
provide further detail on the datasets used in the semantic
segmentation experiments. We also provide additional ex-
perimental insights by visualizing the scatter plots across all
of the experiments from Section 4.2, and by evaluating GBC
using Pearson’s correlation and the un-weighted Kendall’s
rank correlation in classification settings.

1. Limitations and Future work

Here we reflect on some of the key limitations of the
proposed GBC method.

Network Architectures. Firstly, the selected source ar-
chitectures play a key role in evaluating the proposed
method. It is plausible that different architectures yield
different class distributions in the embedding space, which
could impact the per-class Gaussian approximation of GBC.
Further, all the architectures are sensitive to training hyper-
parameter choices, which introduces further complications
in estimating ground truth transferability scores. To allow
for fair comparison, we have used the same network archi-
tectures as in [23] as much as possible, and verified that our
networks are trained until convergence. However, a differ-
ent set of used architectures may influence the results.

Classification networks. GBC measures pairwise class
overlap and hence is suitable for transfer in a classification
setting. However, many interesting transfer learning prob-
lems are in regression, or even unsupervised learning and
reinforcement learning. In terms of regression, it would be
useful to extend GBC, for example by binning the regres-
sion variable and replace the class overlap with an overlap
between the used bins. We believe all of these directions
present promising avenues for future work.
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Figure 1. This figure demonstrates the superiority of spheri-
cal regularization with respect to other strategies in terms of
weighted Kendall’s rank correlation.
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Figure 2. This figure demonstrates the sensitivity of GBC to
PCA dimensionality on Cifar10 in terms of weighted Kendall’s
rank correlation.

2. Empirical analysis of design choices

In this experiment, we evaluate the influence of GBC’s
design choices introduced in our method section. We use
CIFARIO as a target dataset and transfer from the 9 source
architectures pre-trained on ImageNet as described in our
experiments.

Effects of regularization strategies We compare three
Gaussian covariance regularization strategies: none, diag-
onal, and spherical. As we can observe in Figure 1, adding
regularization improves our results, with the best 7, in the
case of spherical regularization.



Effects of PCA dimensions In this experiment, we com-
pare the performance of GBC across multiple PCA dimen-
sions: 16, 32, 64, and 128. We discover performance im-
provements up to 64 dimensions (see Figure 2), after which
we observe a decline in 7,,. Hence, it can be beneficial
to carefully select the appropriate PCA dimensions for the
given use case.

3. Detailed Results for Semantic Segmentation

Here we provide additional results for semantic segmen-
tation. In particular Table 1 shows per-target results for the
source selection task (ranking source datasets for a partic-
ular fixed target dataset), while Table 2 shows per-source
results for the target selection task (ranking target datasets
for a fixed source dataset). For each table we provide the
Weighted Kendall Tau correlation metric for every dataset,
and we indicate whether a transferability metric correctly
predicts the top-1 source (in source selection) or the top-1
target (in target selection).

4. Additional Results for Image Classification

In this section we provide additional experimental results
for the image classification experiments.

* For the source selection experiments (Section 4.1 / Ta-
ble 1 in the main paper), we include different correla-
tion metrics: Weighted Kendall Tau (Table 3a, also in
the main paper), Kendall Tau (Table 3b), and Pearson’s
r coefficient (Table 3c).

* For the dataset transferability experiments (Section 4.2
/ Table 2 in the main paper), we include also the
Weighted Kendall Tau (Table 4a, used in the main pa-
per), Kendall Tau (Table 4b), and Pearson’s r coeffi-
cient (Table 4c).

* Moreover, we provide scatter plots for all target
datasets used in Figure 3, extending Figure 4 in the
main paper.



Tw Top-1

Target Dataset IDS LEEP LogME GBC | IDS LEEP LogME GBC

(131 [le] (23] Owrs | [13] [16] [23]  Ours
Pascal Context [14] 048 0.64 0.82 0.73 - Ve v
Pascal VOC [§] 025 029 0.52 0.44 - - v v
ADE20K [25] 021 042 043 0.41 v v v
COCO [5,11,12] -0.12  -0.15 0.20 -0.14 - - - -
KITTI [1] 0.64 0.77 0.82 0.84 - - - -
CamVid [3] 0.62 0.76 0.75 0.73 v v v v
CityScapes [0] 0.62 0.88 0.92 0.93 - v v v
IDD [19] 0.57 0.80 0.87 0.90 v v v v
BDD [24] 0.77  0.85 0.93 0.90 v v v v
MVD [15] 0.58  0.65 0.72 0.66 - - - -
ISPRS [17] 0.26  0.08 0.52 0.66 v - - v
iSAID [20,22] 035 0.36 0.13 0.27 - - v v
SUN RGB-D [18] 0.53 0.52 0.61 0.57 v - - -
ScanNet [7] 043 071 0.65 0.61 v - - -
SUIM [10] 0.39  0.27 0.64 0.58 - v v v
vKITTI2 [4,9] 0.70  0.65 0.73 0.64 - v v v
vGallery [21] 040 044 0.50 0.27 - - - -

Average ‘ 045 053 0.63 0.59 ‘ 041 047 0.59 0.65

Table 1. Per-target results for segmentation source selection.
Tw Top-1

Source Dataset IDS LEEP LogME GBC | IDS LEEP LogME GBC

[13]  [l6] (23] Owrs | [13] [16] (23] Ours
Pascal Context [14] 053  0.78 0.01 0.72 v - - -
Pascal VOC [§] 0.34 052 0.06 0.69 v - - v
ADE20K [25] 048 0.74 0.01 0.69 - v - v
COCO [5,11,12] 0.12  0.66 0.15 0.73 - - - -
KITTI [1] 048  0.60 0.09 0.70 - - - v
CamVid [3] 0.61 0.57 0.01 0.72 - - - v
CityScapes [0] 0.38  0.57 0.17 0.74 - - - v
IDD [19] 048  0.59 0.24 0.70 - - - v
BDD [24] 0.55 0.69 0.12 0.74 v - - v
MVD [15] 0.58 0.63 0.21 0.68 - - - -
ISPRS [17] -0.10  0.59 0.09 0.69 - - - v
iSAID [20,22] 0.30 0.73 0.02 0.79 v v - v
SUN RGB-D [18] 040 0.54 0.06 0.62 v v - v
ScanNet [7] 040 059 0.05 0.60 v v - v
SUIM [10] 0.32  0.61 0.11 0.72 - - - v
VvKITTI2 [4,9] 0.61 0.62 0.17 0.71 v - - v
vGallery [21] -0.01  0.52 -0.19 0.51 - - - -

Average ‘ 036  0.62 0.08 0.69 ‘ 041 024 0.00 0.76

Table 2. Per-source results for segmentation target selection.



Pets Imagenette CIFAR-

10 CUB’1l1 Dogs Flowers102

SUN CIFAR-100 | Average

LogMe -0.06 0.58 0.25 0.2 0.08 0.00 -0.19 0.34 0.15
H-score  0.06 0.59 0.45 0.16 -0.01 0.09 0.09 0.34 0.22
LEEP  0.63 0.65 0.52 0.25 0.59 -0.46 0.40 0.55 0.39
GBC 0.55 0.63 0.46 0.43 0.80 0.23 0.32 0.35 0.47
(a) Metric: Weighted Kendall Tau (7,,)

Pets Imagenette CIFAR-10 CUB’11 Dogs Flowers102 SUN CIFAR-100 | Average
LogME -0.06 0.56 0.44 0.28 0.17 0.0 -0.17 0.50 0.22
H-score 0.17 0.54 0.56 0.28 0.06 0.13 0.0 0.50 0.28
LEEP 0.5 0.5 0.56 0.28 0.39 -0.28 0.28 0.56 0.35
GBC 0.44 0.39 0.50 0.22 0.67 0.17 0.17 0.39 0.37

(b) Metric: Kendall Tau (1)

Pets Imagenette CIFAR-10 CUB’11 Dogs Flowers102 SUN CIFAR-100 \ Average
LogME 0.33 0.58 0.62 0.45 0.28 0.37 -0.14 0.54 0.38
H-score 0.37 0.52 0.83 0.35 0.25 -0.0 -0.01 0.78 0.39
LEEP 0.28 0.12 0.81 0.03 0.48 -0.2 0.21 0.75 0.31
GBC 0.40 0.45 0.81 0.49 0.44 0.57 0.27 0.77 0.52

(c) Metric: Pearson correlation coefficient (p)
Table 3. Overview of results for transferability for source selection in image classification.
Source LEEP LogME H-score GBC LEEP LogME H-score GBC LEEP LogME H-score GBC

[16] [23] (2] Ours

[16] [23] [?] Ours

[16] (23] (2] Ours

CIFAR-10 CIFAR-10 CIFAR-10
CUB 0.68 0.71 0.69 0.72 0.51 0.53 0.54 0.55 0.69 0.70 0.65 0.70
C-100 0.75 0.75 0.73 0.69 0.58 0.57 0.56 0.55 0.75 0.77 0.70 0.77
F-MNIST  0.68 0.70 0.72 0.68 0.49 0.48 0.50 0.49 0.63 0.65 0.58 0.66
SUN 0.73 0.75 0.72 0.67 0.53 0.55 0.56 0.56 0.71 0.73 0.66 0.72
ImageNet  0.68 0.68 0.69 0.71 0.53 0.53 0.50 0.49 0.69 0.71 0.64 0.70
CIFAR-100 CIFAR-100 CIFAR-100
CUB 0.90 0.29 0.59 0.90 0.84 0.74 0.65 0.84 0.94 0.29 0.56 0.87
C-10 0.92 0.29 0.88 0.92 0.85 0.74 0.73 0.85 0.95 0.29 0.61 0.86
F-MNIST  0.88 0.24 0.26 0.88 0.81 0.69 0.66 0.81 0.92 0.21 -0.29 0.85
SUN 0.90 0.30 0.88 0.90 0.83 0.72 0.74 0.82 0.95 0.19 0.56 0.87
ImageNet 091 0.25 0.88 0.92 0.86 0.74 0.77 0.86 0.95 0.25 0.58 0.82
Fashion-MNIST Fashion-MNIST Fashion-MNIST
CUB 0.72 0.71 0.71 0.71 0.48 0.46 0.49 0.48 0.63 0.64 0.60 0.61
C-10 0.72 0.73 0.69 0.69 0.47 0.49 0.46 0.46 0.61 0.62 0.57 0.59
C-100 0.71 0.71 0.70 0.69 0.47 0.48 0.46 0.46 0.61 0.62 0.56 0.59
SUN 0.71 0.71 0.69 0.71 0.49 0.47 0.47 0.47 0.63 0.63 0.59 0.60
ImageNet  0.72 0.71 0.69 0.70 0.49 0.48 0.47 0.50 0.62 0.63 0.59 0.60
Caltech-USCD Birds 2011 Caltech-USCD Birds 2011 Caltech-USCD Birds 2011
C-10 0.87 -0.59 0.83 0.86 0.79 -0.04 0.69 0.79 0.94 -0.75 0.87 0.77
C-100 0.87 -0.58 0.80 0.87 0.79 -0.02 0.67 0.80 0.94 -0.77 0.81 0.76
F-MNIST  0.70 -0.50 0.51 0.69 0.33 -0.03 0.29 0.33 0.66 -0.68 0.24 043
SUN 0.88 -0.60 0.80 0.88 0.79 -0.04 0.67 0.78 0.95 -0.72 0.56 0.83
ImageNet  0.89 -0.59 0.73 0.88 0.82 -0.02 0.65 0.82 0.94 -0.77 0.76 0.75
SUN-397 SUN-397 SUN-397
CUB 0.95 0.87 0.54 0.95 0.92 0.91 0.27 0.92 0.92 0.91 0.27 0.92
C-10 0.95 0.87 0.12 0.95 0.92 0.90 0.22 0.91 0.92 0.90 0.22 0.91
C-100 0.95 0.88 0.51 0.95 0.90 0.89 0.28 0.90 0.90 0.89 0.28 0.90
F-MNIST  0.95 0.86 0.54 0.95 0.91 0.90 0.26 0.91 0.91 0.90 0.26 0.91
ImageNet  0.96 0.87 0.55 0.96 0.92 0.91 0.26 0.92 0.92 0.91 0.26 0.92
Average 0.82 0.40 0.66 0.82 0.69 0.52 0.51 0.69 0.82 0.36 0.54 0.75

(a) Weighted Kendall Tau (7,)

(b) Kendall Tau (1)

(c) Pearson correlation coefficient (p)

Table 4. Overview of results for transferability for target dataset transferability.
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Figure 3. This figure illustrates the scatter plots of LEEP, LogME, H-score, and GBC for all datasets used in the dataset transferability
experiment (see Section 4.2 and Fig 4 of the main paper). In each plane, the transferability score Ss—,+ of the method is on the X-axis,
with the corresponding As_,+ of each fine-tuned model on the Y-axis. From the plots we observe that while LogME and H-score tend to
struggle to differentiate between some of the target datasets, both GBC and LEEP showcase increasing trends.
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