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A. Proof

In this section, we provide proofs for the proposed Theo-
rem 1, and Theorem 2.

A.1. Proof of Theorem 1

Proof. The conditions in Theorem 1 can be written as
fθ(x1)[y

m
1 ] > 1

2−ξ , ym1 = y1 and fθ(x2)[y
m
2 ] > 1

2−ξ ,
ym2 6= y2, where ξ ∈ [0, 1). Since Aφ(x) is ξ-error at x1
and x2, according to Definition 1, at least one of the bounds
holds for x1 and x2, respectively:
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For x1, there is A∗φ(x1) = 1. Then if bound (i) holds, we
can obtain
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and if bound (ii) holds, we can obtain
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Similarly for x2, there is fθ(x2)[ym2 ] ·A∗φ(x2) = fθ(x2)[y2].

∗Corresponding author.

Then if bound (i) holds, we can obtain
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where it is easy to verify that 2−2ξ
(2−ξ)2 is monotone decreasing

in the interval of ξ ∈ [0, 1). If bound (ii) holds for x2, we
can obtain
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Thus we have proven R-Con(x1) > 1
2 > R-Con(x2).

A.2. Proof of Theorem 2

Proof. Since A∗φ(x) is naturally bounded in [0, 1] for any
input x, and Aφ(x) is bounded in [0, 1] by model design, we
denote {B0, B1, · · · , BS} as S + 1 points in [0, 1], where
B0 = 0 and Bs = 1. These S + 1 points induce S bins
or intervals, i.e., Is = [Bs−1, Bs] for s = 1, · · · , S. When
Aφ(x) is ξ-error at x, we consider the cases of bound (i) and
bound (ii) hold, respectively, as detailed below:

Bound (i) holds. We construct the bins in a geometric
manner, where Bs = 2

2−ξ · Bs−1 and we set B1 = ρ be a
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rounding error. Note that we have
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It is easy to find that if Aφ(x) and A∗φ(x) locate in the same
bin, then bound (i) holds. Therefore, this regression task
can be substituted by a classification task of classes N1 =⌈

log ρ−1

log( 2
2−ξ )

⌉
+ 1.

Bound (ii) holds. In this case, we construct the bins in
an arithmetic manner, where Bs = Bs−1+

ξ
2 . Then we have
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thus we can derive that
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It is easy to find that if Aφ(x) and A∗φ(x) locate in the same
bin, then bound (ii) holds. So this regression task can be
substituted by a classification task of classesN2 =

⌈
2
ξ

⌉
.

B. More backgrounds
Adversarial training. In recent years, adversarial train-

ing (AT) has become the critical ingredient for the state-of-
the-art robust models [10, 16, 18]. Many variants of AT have
been proposed via adopting the techniques like ensemble
learning [45, 59, 67], metric learning [31, 41], generative
modeling [28, 61], curriculum learning [5], semi-supervised
learning [2, 8], and self-supervised learning [11, 12, 27, 43].
Other efforts include tuning AT mechanisms by univer-
sal perturbations [47, 52], reweighting misclassified sam-
ples [63,73] or multiple threat models [40,58]. Accelerating
the training procedure of AT is another popular research
routine, where recent progresses involve reusing the compu-
tations [51,71], adaptive adversarial steps [62,72] or one-step
training [3, 30, 32, 64].

Adversarial detection. Instead of correctly classifying
adversarial inputs, another complementary research routine
aims to detect / reject them [15,25,34,35,42,49,70]. Previous
detection methods mainly fall into two camps, i.e., statistic-
based and model-based. Statistic-based methods stem from
the features learned by standardly trained models. These
statistics include density ratio [22], kernel density [20, 44],
prediction variation [66], mutual information [53,54], Fisher
information [74], local intrinsic dimension [38], activation

invariance [37], and feature attributions [57, 68]. As for the
model-based methods, the auxiliary detector could be a sub-
network [9, 13, 55], a Gaussian mixture model [1, 29, 36], or
an additional generative model [4, 19, 50].

C. More analyses
In this section, we provide implementation details of the

BCE loss, toy examples to intuitively illustrate the effects
of temperature tuning, and analyze the role of T-Con in
randomized classifiers.

C.1. Implementation of the BCE loss

For notation simplicity, we generally denote the BCE
objective as

BCE(f ‖ g) = −g- · log f − (1− g-) · log (1− f) , (1)

where the subscript - indicates stopping gradients, an oper-
ation usually used to stabilize the training processes [24].
We show that the stopping-gradient operations can lead to
unbiased optimal solution for the classifier. Specifically, tak-
ing PGD-AT+RR as an example, the training objective is
minimizing

Ep(x,y) [LCE (fθ(x), y)+BCE (fθ(x)[y
m]·Aφ(x)||fθ(x)[y])]

w.r.t. φ and θ, where we use p(x, y) to represent adversarial
data distribution. Note that the optimal solution of mini-
mizing LCE (fθ(x), y) is fθ(x)[y] = p(y|x), but if we do
not stop gradients of fθ(x)[y] in the RR term (BCE loss),
then the optimal θ of the entire PGD-AT+RR objective no
longer satisfies fθ(x)[y] = p(y|x), i.e., in this case RR will
introduce bias on the optimal solution of classifier. Thus,
stopping gradients on fθ(x)[y] in the RR term can avoid
affecting the training of classifier.

C.2. Toy examples on temperature tuning

Assume that there are three classes, and the confidence /
T-Con on x1 and x2 are

M(x1; τ) =
e
a1
τ

e
a1
τ + e

b1
τ + e

c1
τ

;M(x2; τ) =
e
a2
τ

e
a2
τ + e

b2
τ + e

c2
τ

.

Let a1 = a2 = 0, b1 = 3, c1 = −1000, b2 = c2 = 2, it is
easy to numerically compute that

M(x1; τ = 1) <M(x2; τ = 1);

M(x1; τ = 2) >M(x2; τ = 2).

This mimics the case of T-Con for misclassified inputs. We
can simply choose a1 = a2 = 0, b1 = −1, c1 = −1000,
b2 = c2 = −2 to mimic the case of confidence.



Table 1. Results of different hyperparameters for the KD and
LID methods on CIFAR-10, under (`∞, 8/255) threat model. For
KD, we restore the features on 1, 000 correctly classified training
samples in each class. For LID, we restore the features on totally
10, 000 correctly classified training samples.

Method Hyperparameters
ROC-AUC

Clean PGD-10

KD
σ = 10−1 0.562 0.545
σ = 10−2 0.609 0.581
σ = 10−3 0.618 0.587

LID

K = 100 0.686 0.622
K = 200 0.699 0.638
K = 300 0.706 0.648
K = 400 0.710 0.654
K = 500 0.712 0.658
K = 600 0.711 0.661
K = 700 0.709 0.661
K = 800 0.706 0.660
K = 1000 0.695 0.653
K = 2000 0.603 0.590

Table 2. Results of different hyperparameters for the KD and LID
methods on CIFAR-100. The basic settings are the same as in
Table 1, except that for KD, we restore 100 correctly classified
training features in each class.

Method Hyperparameters
ROC-AUC

Clean PGD-10

KD
σ = 101 0.522 0.517
σ = 1 0.549 0.532

σ = 10−1 0.500 0.479
σ = 10−2 0.473 0.453
σ = 10−3 0.477 0.457

LID

K = 10 0.662 0.652
K = 20 0.674 0.668
K = 40 0.672 0.667
K = 60 0.668 0.661
K = 80 0.659 0.652
K = 100 0.652 0.644
K = 200 0.615 0.607
K = 300 0.584 0.578
K = 400 0.559 0.551
K = 500 0.537 0.529

Standard PGD-AT

Figure 1. t-SNE visualization of the learned features on CIFAR-10.
The irregular distributions of adversarially learned features make
previous statistic-based detection methods less effective.
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Figure 2. Reliability diagrams for an adversarially trained ResNet-
18 on CIFAR-10, and the expected calibration error (ECE) [26].
The model outputs are well calibrated.

C.3. The role of T-Con in randomized classifiers

It has been shown that randomized classifiers like
Bayesian neural networks (BNNs) [34, 48] and DNNs with
randomized smoothing [14] can benefit adversarial robust-
ness. In practice, these methods are usually implemented
by a Monte-Carlo ensemble with finite sampled weights or
inputs. We construct an abstract classification process that
involves both deterministic and randomized classifiers.

Specifically, the returned label ys is sampled from a cat-
egorical distribution as p(ys = l) = fθ(x)[l], where in this
case, fθ(x) is a deterministic mapping either explicitly (e.g.,
for DNNs) or implicitly (e.g., for BNNs) defined. For ex-
ample, considering a BNN gω(x) where ω ∼ qθ(ω), the

induced fθ(x) can be written as

fθ(x)[l] = p

(
l = argmax

ys

N∑
n=1

gωn(ys|x)

)
, (2)

which is the probability measure that the returned label is
l from the Bayes ensemble

∑N
n=1 gωn(ys|x), under the dis-

tributions of ωn ∼ qθ(ω), n ∈ {1, · · · , N}. In practice, we
can obtain empirical estimations on these implicitly defined
fθ(x) by sampling.

By presetting the temperature τ , the expected accuracy
of the returned labels can be written as

Aτ = Ep(x,y)Eys [1ys=y] = Ep(x,y) [fθ(x)[y]] , (3)



Table 3. Classification accuracy (%) and the ROC-AUC scores on CIFAR-100 under PGD-10 attacks. For KD, we restore the features on
100 correctly classified training samples in each class and use σ = 1. For LID, we restore the features on totally 10, 000 correctly classified
training samples and use K = 20. For SNet, the λ = 8 and coverage is 0.7. For EBD, there is min = 6 and mout = 3.

Rejector Clean `∞, 8/255 `∞, 16/255 `2, 128/255
TPR-95 AUC TPR-95 AUC TPR-95 AUC TPR-95 AUC

Architecture backbone: ResNet-18

KD 58.20 0.549 30.23 0.532 16.39 0.510 40.67 0.539
LID 59.49 0.674 31.60 0.668 16.86 0.661 42.01 0.658
GDA 57.06 0.416 29.67 0.412 16.17 0.410 39.83 0.416
GDA∗ 58.98 0.599 31.40 0.593 17.04 0.588 42.10 0.596
GMM 58.06 0.518 30.48 0.505 16.69 0.508 40.68 0.511

SNet 59.68 0.729 33.12 0.743 19.48 0.759 42.72 0.726
EBD 61.44 0.795 34.56 0.776 20.50 0.762 44.22 0.777

RR 64.44 0.837 35.52 0.782 19.89 0.767 47.03 0.802

Architecture backbone: WRN-34-10

KD 62.04 0.602 32.59 0.573 18.19 0.559 41.66 0.575
LID 63.17 0.705 33.27 0.672 18.97 0.652 42.97 0.672
GDA 60.12 0.436 31.64 0.426 17.75 0.421 40.52 0.423
GDA∗ 62.71 0.601 33.79 0.605 18.65 0.575 42.91 0.602
GMM 61.80 0.519 33.33 0.520 18.95 0.529 42.27 0.513

SNet 64.09 0.727 36.14 0.738 22.02 0.753 44.32 0.713
EBD 66.83 0.810 37.76 0.775 21.80 0.743 46.80 0.789

RR 70.14 0.853 38.81 0.790 22.20 0.765 48.26 0.801

where 1ys=y is the indicator function, which equals to one
if ys = y and zero otherwise. In the limiting case of τ →
0, the returned labels are deterministic, and the expected
accuracy is A0 = Ep(x,y)[1ym=y], which degenerates to the
traditional definition of accuracy. Note that in the adversarial
setting, the Bayes optimal classifier, i.e., τ = 0 may not be
an empirically optimal choice. For example, in the cases of
A0 = 0, we can still have Aτ > 0 for the non-deterministic
classifiers.

D. More technical details and results
In this section, we provide more technical details and

results. Our methods are implemented by Pytorch [46], and
run on GeForce RTX 2080 Ti GPU workers. The experi-
ments of ResNet-18 are run by single GPU, while those on
WRN-34-10 are run by two GPUs in parallel.

D.1. The MLP architecture of Aφ(x)

In our experiments, Aφ(x) is implemented by the MLP
as

Aφ(x) =W2(ReLU(BN(W1z + b1))) + b2, (4)

where z is the feature vector shared with the classification
branch, BN is an 1-D batch normalization operation, W1, b1
are the parameters of the first linear layer, and W2, b2 are the

parameters of the second linear layer. For ResNet-18, there is
z ∈ R512, W1 ∈ R256×512, b1 ∈ R256, W2 ∈ R1×256, b2 ∈
R1. For WRN-34-10, there is z ∈ R640, W1 ∈ R320×640,
b1 ∈ R320, W2 ∈ R1×320, b2 ∈ R1.

Empirically, on ResNet-18, the average running time for
PGD-AT is about 316 seconds per epoch, and it for PGD-
AT+RR is about 320 seconds per epoch. As to the parameter
sizes, saving a ResNet-18 model without/with RR branch
uses 44.74 MB/45.27 MB, saving a WRN-34-10 model with-
out/with RR branch uses 184.77 MB/185.59 MB.

D.2. Hyperparameters for baselines

For KD, we restore 1, 000 correctly classified training
features in each class and use σ = 10−3. For LID, we
restore a total of 10, 000 correctly classified training features
and use K = 600. We calculate the mean and covariance
matrix on all correctly classified training samples for GDA
and GMM. For SelectiveNet, the λ = 8 and coverage is 0.7.
For EBD, there is min = 6 and mout = 3.

Kernel density (KD). In [20], KD applies a Gaussian
kernel K(z1, z2) = exp(−‖z1 − z2‖22/σ2) to compute the
similarity between two features z1 and z2. There is a hyper-
parameter σ controlling the bandwidth of the kernel, i.e., the
smoothness of the density estimation. In Table 1 and Table 2,



Table 4. Results of different hyperparameters for the SelectiveNet and EBD methods on CIFAR-10. The AT framework is PGD-AT, and the
evaluated PGD-10 adversarial inputs are crafted with ε = 8.

Method Hyperparameters Accuracy (%) ROC-AUC
Clean PGD-10 Clean PGD-10

SelectiveNet

λ = 8, c = 0.7 80.57 53.43 0.796 0.730
λ = 8, c = 0.8 82.16 53.90 0.768 0.716
λ = 8, c = 0.9 81.33 53.82 0.757 0.694
λ = 16, c = 0.7 81.08 53.62 0.792 0.725
λ = 16, c = 0.8 81.72 53.90 0.782 0.722
λ = 16, c = 0.9 82.21 54.08 0.751 0.701
λ = 32, c = 0.7 79.98 53.52 0.793 0.716
λ = 32, c = 0.8 80.60 53.71 0.774 0.711
λ = 32, c = 0.9 82.48 53.86 0.750 0.704

EBD
min = −5,mout = −23 overflow
min = 6,mout = 0 80.71 52.55 0.831 0.768
min = 6,mout = 3 81.98 53.89 0.832 0.763

Table 5. Classification accuracy (%) and the ROC-AUC scores on CIFAR-10. The AT framework is PGD-AT and the model architecture is
WRN-34-10. For KD, we restore 1, 000 correctly classified training features in each class and use σ = 10−3. For LID, we restore totally
10, 000 correctly classified training features and use K = 600. We calculate mean and covariance matrix on all correctly classified training
samples for GDA and GMM. For SNet, the λ = 8 and coverage is 0.7. For EBD, there is min = 6 and mout = 3.

Rejector Clean `∞, 8/255 `∞, 16/255 `2, 128/255
TPR-95 AUC TPR-95 AUC TPR-95 AUC TPR-95 AUC

KD 85.51 0.759 57.26 0.674 34.87 0.605 67.55 0.695
LID 86.94 0.760 58.53 0.690 35.54 0.642 68.62 0.699
GDA 85.10 0.512 56.47 0.506 34.22 0.482 66.79 0.503
GDA∗ 87.16 0.694 57.62 0.627 34.66 0.561 68.23 0.637
GMM 88.36 0.747 57.98 0.650 34.79 0.568 68.87 0.667

SNet 88.30 0.803 60.07 0.733 37.63 0.695 70.14 0.730
EBD 89.63 0.860 60.96 0.778 36.92 0.712 70.97 0.792

RR 90.74 0.897 61.48 0.783 36.52 0.698 72.00 0.809

we report the ROC-AUC scores under different values of σ,
where we restore the features of 1, 000/100 correctly classi-
fied training samples in each class on CIFAR-10/CIFAR-100,
respectively.

Local intrinsic dimensionality (LID). In [38], LID ap-
plies K nearest neighbors to approximate the dimension of
local data distribution. Instead of computing LID in each
mini-batch, we allow the detector to use a total of 10, 000
correctly classified training data points, and treat the number
of K as a hyperparameter, as tuned in Table 1 and Table 2.

SelectiveNet (SNet). In [21], the training objective con-
sists of three parts, i.e., the prediction head, the selection
head, and the auxiliary head. There are two hyperparameters
in SelectiveNet, one is the coverage c, which is the expected
value of selection outputs, another one is λ controlling the

relative importance of the coverage constraint. In the stan-
dard setting, [21] suggest λ = 32 and c = 0.8, while we
investigate a wider range of λ and c when incorporating
SelectiveNet with the PGD-AT framework, as reported in
Table 4.

Energy-based detection (EBD). In [33], the discrimina-
tive classifier is implicitly treated as an energy-based model,
which returns unnormalized density estimation. The two
hyperparameters in EBD are min and mout, controlling the
upper and lower clipping bounds for correctly and wrongly
classified inputs, respectively. In Table 4, we tried the setting
of min = −5,mout = −23 as used in the original paper,
which overflows on ATMs.



D.3. Details on attacking parameters

For PGD attacks [39], we use the step size of 2/255
under `∞ threat model, and the step size of 16/255 under
`2 threat model. We apply untargeted mode with 10 restarts.
For CW attacks [7], we set the binary search steps to be 9
with the initial c = 0.01. The iteration steps for each c are
1, 000 with the learning rate of 0.005. Let x, x∗ be the clean
and adversarial inputs with the pixels scaled to [0, 1]. The
values reported for CW-`∞ are ‖x − x∗‖∞ × 255, while
those for CW-`2 are ‖x − x∗‖22. The default settings of
AutoAttack [17] involve 100-steps APGD-CE/APGD-DLR
with 5 restarts, 100-steps FAB with 5 restarts, 5, 000 query
times for the square attack. For multi-target attacks [23],
we use 100 iterations and 20 restarts for each of the 9 targeted
class, thus the number of total iteration steps on each data
point is 100 × 20 × 9 = 18, 000. For GAMA attacks, we
follow the default settings used in the offical code1.

D.4. More results of WRN-34-10 and CIFAR-100

In Table 5, we use the larger model architecture of WRN-
34-10 [69]. We evaluate under PGD-10 (`∞, ε = 8/255)
which is seen during training, and unseen attacks with differ-
ent perturbation constraint (ε = 16/255), threat model (`2).
As to the baselines, we choose SNet and EBD since they
perform well in the cases of training ResNet-18. In Table 3,
we experiment on CIFAR-100, and similarly evaluate under
different variants of PGD-10 attacks. We report the results
using both ResNet-18 and WRN-34-10 model architectures.

Moreover, to exclude gradient obstruction [6], we do a
sanity check by running PGD-10 against PGD-AT+RR on
CIFAR-10 under ε = {8, 16, 32, 64, 128}/255, where the
model architecture is ResNet-18. The ALL accuracy (%)
before rejection is {54.40, 33.56, 19.80, 6.71, 0.95}, which
converges to zero.

D.5. Visualization of adversarially learned features

Although statistic-based detection methods like KD, LID,
GDA, and GMM have achieved good performance on STMs
against non-adaptive or oblivious attacks [6], they perform
much worse when combined with ATMs. To explain this
phenomenon, we plot the t-SNE visualization [60] in Fig. 1
on the standardly and adversarially learned features. As
seen, ATMs have much more irregular feature distributions
compared to STMs, while this fact breaks the statistic as-
sumptions and rationale of previous statistic-based detection
methods. For example, GDA applying a tied covariance ma-
trix becomes unreasonable for ATMs, and this is why after
using the conditional covariance matrix, GDA∗ performs
better than GDA.

In Fig. 2, we also plot the reliability diagrams for an
adversarially trained ResNet-18 on CIFAR-10, and we report

1https://github.com/val-iisc/GAMA-GAT

the expected calibration error (ECE) [26]. We can observe
that the model trained by PGD-AT is well-calibrated, at least
on the seen attack PGD-10, which is consistent with previous
observations [56, 65].
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