
Appendix

A. Implementation Details of Styleformer

We implemented our Styleformer on top of the
StyleGAN2-ADA Pytorch implementation 1. Most of the
details have not changed except generator architecture. We
used CIFAR-10 tuning version of StyleGAN2-ADA, which
means disabling style mixing regularization, path length
regularization, and residual connections in D when training.
We also fixed mapping network’s depth to 2. We used bilin-
ear filtering in all upsampling layer used in Styleformer. We
use data augmentation pipeline suggested in StyleGAN2-
ADA, and did not use mixed-precision training for all ex-
periments.

For Styleformer encoder, we add bias and noise at the
end of the encoder block, then performing leaky RELU
with α = 0.2. After passing several encoder blocks, we
reshaped it to the form of square feature map, i.e., Unflat-
ten. We then proceed bilinear upsample operation as we
said in the Section 3.1, but also convert these reshaped out-
put for each resolution into an RGB channel, using ToRGB
layer. We upsample each of RGB output and add to each
other, creating an output-skip connection generator, similar
to StyleGAN2 generator. Originally ToRGB layer converts
high-dimensional per pixel data into RGB per pixel data via
1×1 convolution operation, which we replace it to same op-
eration, linear operation. We initialize all weights in Style-
former encoder using same method used in Pytorch linear
layer. Unlike StyleGAN2-ADA, we employ weight demod-
ulation also in ToRGB layer. We perform all experiments
with 4 Titan-RTX using Pytorch 1.7.1. All of our experi-
ments presented in the paper including failure spent about
four months.

As in Section 4.1, the number of the Styleformer encoder
and hidden dimension size for each resolution can be chosen
as hyperparameters. We call these two hyperparameters as
”Layers” and ”Hidden size”, respectively.

Low-Resolution Synthesis with Styleformer For low-
resolution synthesis experiment in Section 4.1, we use pure
Styleformer. Each Layers and Hidden size used for CIFAR-
10, STL-10, and CelebA are shown in 1. We trained Style-
former for 65M, 92M, 25M at CIFAR-10, STL-10 and
CelebA, respectively.

For CIFAR-10 experiment, we use 50K images (32 ×
32) at the training set, without using the label. For STL-10
experiment, we resize 96×96 image datasets to 48×48, and
using 5k training images, 100k unlabeled images together
as in [2] we change the size of the constant input from 8×8
to 12 × 12 to generate an image with a size of 48 × 48.

1https : / / github . com / NVlabs / stylegan2 - ada -
pytorch

Table 1. Details of Styleformer hyperparameters at low resolution
synthesis. This model setting match with performance result at
Table 2 in paper.

Datasets Layers Hidden size FID

CIFAR-10 {1,3,3} {1024,512,512} 2.82
STL-10 {1,2,2} {1024,256,64} 15.17
CelebA {1,2,1,1} {1024,256,64,64} 3.92

For CelebA dataset, we use 200k unlabeled face images of
the Align and Cropped version, which we resize to 64× 64
resolution as in [2]. We start at 8 × 8 constant, as we train
CIFAR-10 dataset.

Ablation study details As we said in paper, we use small
version of Styleformer with CIFAR-10 dataset for ablation
study. In more detail, we use 1,2,2 for Layers, 256, 64, 16
for Hidden size, trained for 20M images.

Number of head experiment We conduct experiment
about number of heads effect using one layer Styleformer,
as said in Figure 3 in paper. One Layer Styleformer is a
model that starts with 32 × 32 learned constant and only
have one Styleformer encoder with hidden dimension size
256. We trained the model for 20M images, same as abla-
tion study.

B. Attention map analysis

Post-Layer normalization We analyze the results of the
attention map experiment on layer normalization. We pro-
pose in Section 3.2 that if we perform layer normalization at
the end of Styleformer encoder, it breaks the attention map.
Figure 1 shows that if layer normalization is located at the
end of the encoder, the attention map has not been properly
learned. Therefore, we position layer normalization to the
front of the encoder (i.e. after applying style modulation)
so that the attention map can effectively learn the relation-
ship between pixels. The experiment is all conducted on
CIFAR-10, using small version of Styleformer, same as ab-
lation study.

Demodulation for Query and Key As in Section 3.3, we
demonstrate that when an attention map is created with Q,
K from input scaled by style vector, specific value in atten-
tion map becomes very large. We show the attention map
without demodulation operation to Q and K in Styleformer
at Figure 1. We can see that without demodulation opera-
tion, attention is heavily concentrated on a particular pixel,
preventing the attention operation from working properly.

https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch


Original

16✕16 16✕16 32✕32 32✕328✕8

End of the 
block

Figure 1. Comparison of attention map experimented based on Layer Normalization

8✕8 16✕16 16✕16 32✕32 32✕32

Without 
Demodulation 
Query and Key

Figure 2. Attention map without demodulation operation to query and key. Comparing with Figure 1 upper row, we can see specific large
value in attention map.

We overcome this problem with demodulation operation to
Q, K, before creating attention map.

C. Intuition of Increased Multi-Head Attention
Transformer is designed for natural language processing

(NLP). It is difficult to use original Transformer in the field
of image generation. A convolution network can efficiently
generate images, unlike a linear layer, because it proceeds
both operations between pixels using kernels and between
channels. Although not a convolution network structure, [4]
has shown that architecture with pixel-to-pixel and channel-
to-channel operations can be efficient in learning informa-
tion about images.

Unlike the original convolution operation, in Mo-
bileStyleGAN [1], they show good performance in image
generation even by separating the interpixel and interchan-
nel operations with depthwise separable convolution.

Main operation of Transformer can be divided into a in-
terpixel operation (i.e. pixel section) and a interchannel op-
eration (i.e. channel section) and it can be expressed by the
following formula.

Ai = softmax(
QiK

T
i√

dk
), (1)

headi = AiVi, (2)

Multihead(Q,K, V ) =Concat(head1, . . . , headk)W
O,
(3)

In above formulation, Qi, Ki, Vi is query, key, value for
each head. d is the dimension of (query, key, value), k is

the number of heads, and dk is d/k. Ai is attention map
and WO is the parameters of a linear layer that integrates
multi-heads.

Pixel section corresponds for the self-attention operation
between pixels (i.e., Equation 2), and channel section corre-
sponds for integration of multi-head with linear layer, which
operates between channels (i.e., Equation 3). In a Trans-
former, the pixel section is slightly different from depthwise
convolution. In depthwise convolution, kernel weights exist
for each channel, but in Transformer, attention map A acts
like one huge kernel, which means applying equal kernel
weight to all different channels in V . It is difficult to cre-
ate a powerful generator using a Transformer because the
same attention kernel is applied for each channel, unlike the
generator using depthwise separable convolution.

Using increased multi-head attention, this problem could
be overcome. We can generate various attention maps (i.e.,
kernels) by increasing the number of heads. However, in-
creasing the number of heads inevitably leads to smaller
depth, where depth is hidden channel dimension divided by
the number of heads. Since depth is a dimension used to
create the attention map, there exists a minimum depth re-
quired. However, due to differences in the properties of pix-
els and tokens, the required depth size in computer vision is
smaller than NLP.

In the field of NLP, a single token has a lot of informa-
tion, so the required depth dimension, which represents the
token, must be large, but one pixel in an image has less in-
formation than a token, which means that the required depth
is smaller than a traditional Transformer. As described in



the caption of Figure 3, the left graph shows a hidden di-
mension of 256, and the right graph shows 32. In the left
graph, until the number of heads is 8 (depth is 32), per-
formance increases when the number of heads grows up,
but after that, even if the number of heads is increased, the
performance decreases because the depth is less than 32.
Similarly, in the right graph, performance is best when the
number of heads is 1 (depth is 32), and after that, perfor-
mance degrades because the depth is less than 32. From
these results, we demonstrate that increasing the number of
heads too much results in poor performance, and fixing the
depth to 32.

Meanwhile, the channel section is a layer to integrate
the multi-head together, where the linear layer is exactly
the same operation as the 1 × 1 convolution, i.e., point-
wise convolution. Unlike convolution, the attention kernel
is a kernel generated by the input itself, so it can create a
more dense kernel, and it is advantageous to capture global
features because it considers the relationship between all
pixels. Therefore, by enhancing multi-head attention, the
Styleformer can play a more powerful role as depthwise
separable convolution, enabling generate high-quality im-
ages.

D. Demodulation for Encoder Output
As described in Section 3.3, self-attention conducts more

operations than the convolution operation, making the de-
modulation process more complex. We show how standard
deviation of encoder output can be derived (Demodulation
for Encoder Output at Section 3.3), and the effect of the
number of pixel in output standard deviation.

Derivation of encoder output standard deviation After
demodulation operation to Q, K and V , Styleformer en-
coder performs style modulation to input V , weighted sum
of V with attention map, and then performs linear opera-
tion. Let’s consider the attention map matrix as A, and the
weight matrix of linear operation as w. Since the matrix
multiplication is associative, statistics of the output are the
same even if the linear operation is calculated before multi-
plication with attention map :

output = [A(sj · V )]w = A[(sj · V )w]. (4)

From now on, we think the linear operation is conducted
before the multiplication with the attention map. Therefore,
same as demodulation for query, key, and value, style mod-
ulation to V can be replaced to scaling linear weights:

w′
jk = sj · wjk, (5)

where sj scales jth feature map of V , and k enumerates the
flattened output feature map. Assuming that input V have

a unit standard deviation, the standard deviation of output
after linear operation can be derived as follows:

σk =

√∑
j

w
′
jk

2. (6)

Finally, this output is multiplied with the attention map ma-
trix A. When the attention score vector for lth pixel is ex-
pressed as Al·, standard deviation of encoder output is as
follows:

σ
′

lk =

√∑
·

Al·2 ·
∑
j

w
′
jk

2. (7)

Effect of the number of pixel Scaling the encoder out-
put feature map k with 1/σ

′′

k where σ
′′

k =
√∑

j w
′
jk

2, the
standard deviation of output activations will be

σlk =

√∑
·

Al·2. (8)

Since the attention map A is matrix after softmax operation,∑
· Al· = 1. Assuming Al· are i.i.d random variables from

normal distribution with mean
1

n
and variance

1

n2
, and n

denotes the number of pixel, σlk
2 can be derived as follows:

σlk
2 =

∑
·

Al·
2 =

∑
·

(Al· −
1

n
)2 +

1

n
, (9)

using
∑

· Al· = 1. Then (Al·−
1

n
) become random variables

from normal distribution with zero mean and variance 1/n2.

Based on the property of normal distribution,
∑

· (Al· −
1

n
)

follows gamma distribution with shape parameter
n

2
and

scale parameter
2

n2
. Therefore, using Chebyshev inequal-

ity, we have

Pr(|
∑
·

(Al· −
1

n
)2 −

1

n
| ≤

1

n
) ≥ 1−

2

n
, (10)

meaning σlk approaches zero when the number of pix-
els(i.e., n) increase.

E. Implementation details of Styleformer-L
We introduce Styleformer-L, a model with Linformer ap-

plied to self-attention operation of Styleformer. When ap-
plying Linformer, we fix k (i.e., projection dimension for
key, value) to 256, and apply to the encoder block above



32× 32 resolution. For projection parameter sharing effect,
we used Key-value sharing. It means we create single E
projection matrix for each layer that applies equally to the
key, value of each head. We project key and value to k di-
mension after demodulation for key and value, i.e., before
creating attention map and weight sum of value. When us-
ing Linformer, to prevent augmentation leaking, we clamp
augmentation probability to 0.7.

CelebA We conduct CelebA experiment using
Styleformer-L in the same setting as CelebA using
pure Styleformer for fair comparision (Table 3 in paper).
We use {1, 2, 1, 1} for Layers, {1024, 256, 64, 64} for
Hidden size, and training for 25M images.

LSUN-Church We use {1, 2, 1, 1, 1} for Layers,
{1024, 256, 64, 64, 64} for Hidden size, training for 40M
images.

F. Implementation Details of Styleformer-C

We introduce Styleformer-C, which combines Style-
former and StyleGAN2. We generate low-resolution parts
(up to 32×32) of image using Styleformer Encoder, and the
rest of the resolutions parts of image are generated by ap-
plying StyleGAN2 block. Fundamentally, in Styleformer-
C, the detail of Styleformer part is the same as that of
Appendix A, and the StyleGAN2 part is the same as that
of StyleGAN2 [3] implementation. We experiment with
CLEVR and Cityscapes which is high-resolution multi-
object or compositional scene datasets with a image size
of 256 × 256, and we also experiment AFHQ-Cat which is
a high-resolution single-object dataset with a image size of
512 × 512. We performed all training runs on NVIDIA 2
Tesla V100 GPUs.

CLEVR and Cityscapes In CLEVR, we start at 8 × 8
learned constant input just like the default setting and used
{1, 2, 1, 1, 1, 1} for Layers, {1024, 256, 256, 256, 256, 128}
for Hidden size, training for 10M images. Here, what Lay-
ers means in StyleGAN2 is a block which has two convolu-
tion operations and what Hidden size means in StyleGAN2
is the number of channels. In Cityscapes, we apply Style-
GAN2 in the same way as CLEVR. We also set Layers and
Hidden size same as CLEVR experiment. Furthermore, we
train Styleformer-C for 36M images.

AFHQ-Cat Likewise, we start with 8 × 8 learned con-
stant input and generate an image of 512 × 512 size.
We set Layers to {1, 2, 1, 1, 1, 1} and Hidden size to
{1024, 256, 256, 256, 256, 64} to train Styleformer-C for
9M images.

G. Visual Samples
We show various samples generated with Styleformer,

Styleformer-L and Styleformer-C in this section.

References
[1] Sergei Belousov. Mobilestylegan: A lightweight convolu-

tional neural network for high-fidelity image synthesis, 2021.
2

[2] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan:
Two transformers can make one strong gan, 2021. 1

[3] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan, 2020. 4

[4] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas
Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, An-
dreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture
for vision, 2021. 2



Figure 3. High-resolution samples generated by Styleformer-C on AFHQ-Cat.



Figure 4. High-resolution samples generated by Styleformer-C on CLEVR.



Figure 5. High-resolution samples generated by Styleformer-L on CelebA.



Figure 6. High-resolution samples generated by Styleformer-L on LSUN-church.



Figure 7. Samples generated by Styleformer on CIFAR-10.


	. Implementation Details of Styleformer
	. Attention map analysis
	. Intuition of Increased Multi-Head Attention
	. Demodulation for Encoder Output
	. Implementation details of Styleformer-L
	. Implementation Details of Styleformer-C
	. Visual Samples

